簡易檢索 / 詳目顯示

研究生: 陳宛柔
Wan-Jou Chen
論文名稱: 三羰基鎝99m標誌HYNIC-Cyclic RGD Peptide耦合物作為腫瘤造影劑之研究
Study on Tricarbonyl 99mTechnetium(I) Labeled HYNIC-Cyclic RGD Peptide as a Specific Marker of αvβ3 Integrin for Tumor Imaging
指導教授: 羅建苗
Jem-Mau Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 60
中文關鍵詞: 血管新生RGD胜肽雙官能基螯合劑三羰基鎝99m
外文關鍵詞: angiogenesis, αvβ3 integrin, RGD peptide, HYNIC, Tc-99m
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • αvβ3 integrin是一種與腫瘤血管新生及腫瘤轉移相關的細胞黏著受器(cell adhesion receptor)。由於αvβ3 integrin與具Arg-Gly-Asp(RGD)序列之胜肽具有高度的專一結合性,利用放射性標誌RGD胜肽可發展成為有效且具專一性的腫瘤造影劑。據文獻報導,迄今已有多種放射性核種標誌化合物被探討用於偵測αvβ3 integrin,進而作為腫瘤造影劑。鑑於99mTc具有優良的核子特性(Eγ=140.5 keV;t1/2=6 hr;可由99Mo-99mTc發生器取得經濟又方便),以99mTc標誌RGD peptide,當具有臨床醫學應用的價值。
    本研究旨在開發99mTc(I)-HYNIC-RGD藥物應用於腫瘤血管新生造影。參考過去文獻報導方法分別製備出NHS-HYNIC、HYNIC-RGD 耦合物與[99mTc(CO)3(OH2)3]+【Abrams et al. J Nucl Med 31 (1990) 2022和Su et al. Bioconjugate Chem 13 (2002) 561和Alberto et al. J Am Chem Soc 120 (1998) 7987】。以NHS-HYNIC與RGD作用製備成HYNIC-RGD耦合物。繼之以[99mTc(CO)3(OH2)3]+為前驅物於pH 7.4及室溫條件下進行標誌HYNIC-RGD得99mTc(I)-HYNIC-RGD。在本研究製備所得之99mTc(I)-HYNIC-RGD 溶液,利用放射化學分析方法包括薄層層析法(TLC)、電泳動分析(EP)和高效能液相層析(HPLC)測定標誌效率。
    根據實驗結果得知99mTc(CO)3+標誌於HYNIC-RGD標誌產率可達60%以上,顯見99mTc(I)-HYNIC-RGD藥物製備之可行性。而活體的動物實驗目前仍在進行當中,尚無具體的結果。


    The αvβ3 integrin is an important cell adhesion receptor involved in tumor-induced angiogenesis and tumor metastasis. The high binding specificity to αvβ3 integrins of peptides containing Arg-Gly-Asp (RGD) residue suggests that the radiolabeled RGD peptides be useful as tumor specific imaging agents. Recently, several radionuclides were used to detect αvβ3 integrins and were suitable for noninvasive determination of tumor status, therapy monitoring and possibility of tumor metastasis. Since 99mTc is characteristic of excellent radionuclide with a high-resolution 140.5 keV γ, a half-life 6 h, economically and conveniently available from 99Mo-99mTc generator and extensively used in nuclear medicine, it will be significant to develop 99mTc labeled RGD peptide for clinical use in nuclear medicine.
    Synthesis of NHS-HYNIC, conjugation of RGD peptide with NHS-HYNIC and preparation of [99mTc(CO)3(OH2)3]+ were carried out respectively according to the previous reports [Abrams et al. J Nucl Med 31(1990) 2022, Su et al. Bioconjugate Chem 13(2002) 561 and Alberto et al. J Am Chem Soc 120(1998) 7987]. RGD peptide was labeled with [99mTc(CO)3(OH2)3]+ via hydrazinonicotinamide as a bifunctional chelator. 99mTc(I)-HYNIC-RGD was prepared by mixing the [99mTc(CO)3(OH2)3]+ solution with HYNIC-RGD in PBS buffer at room temperature. Radiochemical characterization for 99mTc(I)-HYNIC-RGD were conducted by thin layer chromatography, electrophoresis, and HPLC.
    According to the results, the radiochemical purity for 99mTc(I)- HYNIC-RGD was around 60%. The synthesis and labeling work for 99mTc(I)-HYNIC-RGD has been established in this study. Furthermore in vitro and in vivo tests for 99mTc(I)-HYNIC-RGD for tumor angiogenesis imaging study are underway.

    目錄 頁次 謝誌 I 中文摘要 III 英文摘要 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 核醫藥物簡介 1 1-2 血管新生(Angiogenesis) 3 1-3 99mTc(I)三羰基標誌RGD Peptide 7 1-4 研究方向及目的 9 第二章 NHS-HYNIC有機合成 11 2-1 試藥 11 2-2 儀器與材料 12 2-3 Succinimidyl-6-hydrazinopyridine-3-carboxylic acid (NHS-HYNIC)之合成 13 2-3-1 實驗步驟 13 2-4 結果與討論 16 第三章 HYNIC-RGD peptide耦合 24 3-1 試藥 24 3-2 儀器與材料 24 3-3 NHS-HYNIC與RGD peptide之耦合 25 3-3-1 實驗步驟 26 3-3-1.1 反應步驟 26 3-3-1.2 高效能液相層析 26 3-4 結果與討論 27 第四章 三羰基鎝99m(I)([99mTc(CO)3(OH2)3]+)標誌 HYNIC-RGD peptide 31 4-1 試藥 31 4-2 儀器與材料 32 4-3 [99mTc(CO)3(OH2)3]+之製備與標誌HYNIC-RGD peptide 33 4-3-1 實驗步驟 33 4-3-1.1 [99mTc(CO)3(OH2)3]+之製備 33 4-3-1.2 標誌HYNIC-RGD peptide 34 4-4 標誌效率分析 34 4-4-1 薄層層析法 34 4-4-1.1 99mTcO4- 與[99mTc(CO)3(OH2)3]+薄層層析 34 4-4-1.2 99mTc(I)HYNIC-RGD peptide薄層層析 35 4-4-2 電泳動分析 35 4-4-2.1 99mTcO4- 與[99mTc(CO)3(OH2)3]+電泳動分析 35 4-4-2.2 99m Tc(I)HYNIC-RGD peptide電泳動分析 36 4-4-3 高效能液相層 36 4-4-3.1 99mTcO4-與[99mTc(CO)3(OH2)3]+高效能液相層析 36 4-4-3.2 99m Tc(I)HYNIC-RGD peptide高效能液相層析 36 4-6 結果與討論 37 第五章 動物組織器官生物分佈及腫瘤造影 43 5-1 試藥 43 5-2 儀器與材料 43 5-3 細胞株 44 5-3-1 U-87MG神經纖維瘤細胞生長曲線測定 45 5-4 實驗動物 45 5-4-1 裸鼠U-87MG神經纖維瘤細胞腫瘤模式建立 46 5-5 生物分佈 46 5-6 動物造影 47 5-7 結果與討論 47 第六章 結論 53 第七章 參考文獻 54 表目錄 表5-1 細胞株資料 49 表5-2 99mTc(I)-HYNIC-RGD peptide 於裸鼠體內之生物分佈 52 圖目錄 圖1-1 NHS-HYNIC與[99m Tc(CO)3(OH2)3]+形成配位結合 結構推測圖 8 NHS-HYNIC之合成流程圖 13 製備HCl/dioxane溶液之裝置圖 16 圖2-1.1 HYNIC 之1H核磁共振光譜圖 20 圖2-1.2 HYNIC 之13C核磁共振光譜圖 20 圖2-2.1 6-BOC-HYNIC之1H核磁共振光譜圖 21 圖2-2.2 6-BOC-HYNIC之13C核磁共振光譜圖 21 圖2-3.1 Succinimidyl 6-BOC-HYNIC之1H核磁共振光譜圖 22 圖2-3.2 Succinimidyl 6-BOC-HYNIC之13C核磁共振光譜圖 22 圖2-4.1 Succinimidyl-6-HYNIC 之1H核磁共振光譜圖 23 圖2-4.2 Succinimidyl-6-HYNIC 之13C核磁共振光譜圖 23 NHS-HYNIC與RGD peptide耦合之結構推測圖 25 耦合反應圖解 27 圖3-1 RGD peptide之HPLC (C-18 RP)分析圖譜(波長: 240nm) 29 圖3-2 RGD peptide之HPLC (C-18 RP)分析圖譜(波長: 254nm) 29 圖3-3 HYNIC-RGD peptide之HPLC (C-18 RP)分析圖譜 (波長: 240nm) 30 圖3-4 HYNIC-RGD peptide之HPLC (C-18 RP)分析圖譜 (波長: 254nm) 30 99mTc(I)HYNIC-RGD peptide標誌之結構推測圖 33 圖4-1 99mTcO4- 之薄層層析圖 39 圖4-2 [99mTc(CO)3(OH2)3] + 之薄層層析圖 39 圖4-3 99m Tc(I)-HYNIC-RGD peptide 之薄層層析圖 39 圖4-4 99mTcO4- 之電泳動分析圖 40 圖4-5 [99mTc(CO)3(OH2)3] + 之電泳動分析圖 40 圖4-6 99m Tc(I)-HYNIC-RGD peptide 之電泳動分析圖 40 圖4-7 99mTcO4- 之高效能液相層析圖 41 圖4-8 [99mTc(CO)3(OH2)3] + 之高效能液相層析圖 41 圖4-9 99m Tc(I)-HYNIC-RGD peptide 之高效能液相層析圖 41 圖4-10 99mTcO4- 之高效能液相層析圖 42 圖4-11 [99mTc(CO)3(OH2)3] + 之高效能液相層析圖 42 圖5-1 U-87MG神經纖維瘤細胞 50 圖5-2 U-87MG神經纖維瘤細胞生長曲線 51 圖5-3 [99mTc(CO)3(OH2)3]+ 注射於種有U-87MG 神經纖維瘤細胞的裸鼠之造影圖 51 圖5-4 [99mTc(CO)3(OH2)3]+ 於裸鼠體內之生物分佈 52

    1.Saha G. B., Ph.D. Fundamentals of Nuclear Pharmacy. 4th ed. Springer. 1997

    2.Hom R. K. and Katzenellenbogen J. A., Techetium-99m-Labeled Receptor-Specific Small-Molecule Radiopharmaceticals: Recent Developments and Encouraging Results. Nuclear Medicine and Biology. 1997; 24, 485-498

    3.Schwochau K., Technetium radiopharmecuticals-fundamentals, synthesis, structure, and development. Angew. Chem. Int. Ed. Engl. 1994; 33, 2258-2267

    4.Jurisson S. S. and Lydon J.D., Potential Technetium Small Molecule Radiopharmaceuticals. Chem. Rev. 1999; 99, 2205-2218

    5.Carmeliet P, Jain R. K., Angiogenesis in cancer and other diseases. Nature. 2000; 407, 249-256

    6.Risau W., Mechanisms of angiogenesis. Nature. 1999; 386, 671-674

    7.Folkman J., Clinical applications of research on angiogenesis. N Engl J Med. 1995; 333, 1757-1763

    8.Bamias A., Dimopoulos M. A., Angiogenesis in Human Cancer: implications in cancer therapy. European Journal of Internal Medicine. 2003; 14, 459-469

    9.Levy A. P., Levy N. S., Wegner S., Goldberg M. A., Transcriptional regulation of the rat vascular endothelial growth factor by hypoxia. J Biol Chem. 1995; 270, 13333-13340

    10.Wang G. L., Jiang B. H., Rue E. A., et al. Hypoxia-inducible factor 1 is abasic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995; 92, 5510-5514

    11.Brooks P. C., Montgomery A. M. P., Rosenfeld M., et al., Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994; 79, 1157-1164

    12.Bischoff J., Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995; 5, 69-73

    13.Folkman J., Tumor angiogenesis: Therapeutic implications. N Engl J Med. 1971; 285, 1182-1186

    14.Hanahan D., Weinberg R. A., The hallmarks of cancer. Cell. 2000; 100, 7-70

    15.Stephen B. F., Gotter K. C., Harris Al., Tumor angiogenesis. J Pathol. 1996, 179, 232-237

    16.Szekanecz Z., Halloran M. M., Haskell C. J., Shah M. R., Polverini P. J., Koch A. E., Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci Glycotechnol. 1999; 11, 73–93

    17.Rueegg C., Dormond O., Foletti A., Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: which side to target? Endothelium. 2002; 9, 151–160

    18.Humphries M. J., Integrin structure, Biochem. Soc. Trans. 2000; 28, 311–339

    19.Hynes R. O., Integrins: a family of cell surface receptors, Cell. 1987; 48, 549–554

    20.Ruoslahti E., The Walter Herbert Lecture. Control of cell motility and tumour invasion by extracellular matrix interactions, Br. J. Cancer. 1992; 66, 239–242

    21.Hynes R.O., Integrins: versatility, modulation, and signaling in cell adhesion, Cell. 1992; 69, 11–25

    22.Albelda S. M., Mette S. A., Elder D. E., Stewart R., Damjanovich L., Herlyn M., Buck C. A., Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression, Cancer Res. 1990; 50, 6757–6764

    23.Stromblad S., Cheresh D. A., Integrins, angiogenesis and vascular cell survival, Chem. Biol. 1996; 3, 881–885

    24.Brooks P. C., Clark R. A., Cheresh D. A., Requirement of vascular integrin avb3 for angiogenesis, Science. 1994; 264, 569–571

    25.Brooks P. C., Montgomery A. M., Rosenfeld M., Reisfeld R. A., Hu T., Klier G., Cheresh D. A., Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell. 1994; 79, 1157–1164

    26.Bock M., Bruchertseifer F., Haubner R., Senekowitsch-Schmidtke R., Kessler H., Schwaiger M., Wester H. J., 99mTc, 188Re and 90Y-labeled avb3-antagonists: promising tracer for tumor induced angiogenesis, J. Nucl. Med. 2000; 41, 41P

    27.Jong D. M., VanHagen P. M., Breeman W. A., Bernard H. F., Schaar M., Van Gameren A., Srinivasam A., Schmidt M., Bugaj J. E., Krenning E. P., Evaluation of a radiolabeled cyclic DTPA-RGD analog for tumor imaging and radionuclide therapy, J. Nucl. Med. 2000; 41, 232P

    28.Haubner R., Wester H. J., Bock M., Senekowitsch-Schmidtke R., Herz M., Reuning U., Diefenbach B., Stocklin G., Kessler H., Schwaiger M., Comparison of tumor uptake and biokinetics of 125I- and 18F- labeled RGD-peptides, J. Labelled Compds. Radiopharm. 1999; 42, S36–S38

    29.Haubner R., Wester H. J., Burkhart F., Senekowitsch-Schmidtke R., Weber W., Goodman S. L., Kessler H., Schwaiger M., Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics, J. Nucl. Med. 2001; 42, 326– 336

    30.Haubner R., Wester H. J., Reuning U., Senekowitsch-Schmidtke R., Diefenbach B., Kessler H., Stocklin G., Schwaiger M., Radiolabeled avb3 integrin antagonists: a new class of tracers for tumor targeting, J. Nucl. Med. 1999; 40, 1061–1071

    31.Haubner R., Wester H. J., Weber W. A., Mang C., Ziegler S. I., Goodman S. L., Senekowitsch-Schmidtke R., Kessler H., Schwaiger M., Noninvasive imaging of avb3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography, Cancer Res. 2001; 61, 1781–1785

    32.Janssen M. L. H., Boerman O. C., Edwards D. S., Barnett J. A., Rajopadhye M., Oyen W. J. G., Corstens F. H. M., 111In and 99mTc labeled peptides against the avb3 integrin: a new target for radionuclide peptide targeting of tumors, J. Nucl. Med. 2000; 41, 33P

    33.Line B. R., Bennett J. A., Andersen T. T., Wurthmann A., Salgam M., Hnatowich D. J., Evaluation of 99mTc radiolabeled angiogenesis targeting peptides and dextran-peptide conjugates in xenograft models of human breast and prostate cancer, J. Nucl. Med. 2000; 41, 33P

    34.Line B. R., Wurthmann A., Andersen T. T., Salgam M., Pumiglia K., Preparation of 99mTc radiolabeled dextran-peptide conjugates targeting multiple tumor angiogenesis related ligands, J. Nucl. Med. 2000; 41, 232P

    35.Sivolapenko G. B., Skarlos D., Pectasides D., Stathopoulou E., Milonakis A., Sirmalis G., Stuttle A., Courtenay-Luck N. S., Konstantinides K., Epenetos A. A., Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide, Eur. J. Nucl. Med.1998; 25, 1383–1389

    36.Ruoslahti E., Pierschbacher M. D., New perspectives in cell adhesion: RGD and integrins, Science. 1987; 238, 491–497

    37.Aumailley M., Gurrath M., Muller G., Calvete J., Timpl R., Kessler H., Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1, FEBS Lett. 1991; 291, 50–54

    38.Abrams M. J., Juweid M., tenKate C. I., et al., Technetium-99m- human polyclonal IgG radiolabeled via the hydrazine nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med. 1990; 31: 2022–2028.

    39.Schwartz D. A., Abrams M. J., Hauser M. M., Gaul F. E., Larsen S. K., Rauh D., and Zubieta J. A., Preparation of hydrazino-modified proteins and their use for the synthesis of 99mTc-protein conjugates. Bioconjugate Chem. 1991; 2, 334-336

    40.Babich J. W., Solomon H., Pike M. C., Kroon D., Graham W., Abrams M. J., Tompkins R. G., Rubin R. H., Barrow S. A., and Fischman A. J., Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection. J. Nucl. Med. 1993; 34, 1964-1974

    41.Babich J. W., and Fischman A. J., Effect of “coligand” on the biodistribution of 99mTc-labeled hydrazine nicotinic acid derivatized chemotactic peptides. Nucl. Med. Biol. 1995; 22, 25-30

    42.Fischman A. J., Babich J. W., and Rubin R. H., Infection imaging with technetium-99m-labeled chemotactic peptide analogs. Semin. Nucl. Med. 1994, 24, 154-168

    43.Fischman A. J., Babich J. W., and Strauss H. W., A ticket to ride: peptide radiopharmaceuticals. J. Nucl. Med. 1993; 34, 2253-2263

    44.Fischman A. J., Rauh D., Solomon H., Babich J. W., Tompkins R. G., Kroon D., Strauss H. W., and Rubin H. R., In vivo bioactivity and biodistribution of chemotactic peptide analogs in nonhuman primates. J. Nucl. Med. 1993; 34, 2130-2134

    45.Babich J. W., Graham W., Barrow S. A., and Fischman A. J., Comparison of the infection imaging properties of a 99mTc labeled chemotactic peptide with 111In IgG. Nucl. Med. Biol.1995; 22, 643-648

    46.Edwards D. S., Liu S., Ziegler M. C., Harris A. R., Crocker A. C., Heminway S. J., Barrett J. A., Bridger G. J., Abrams M. J., and Higgins J. D., RP463: A Stabilized Technetium-99m Complex of a Hydrazino Nicotinamide Derivatized Chemotactic Peptide for Infection Imaging. Bioconjugate Chem. 1999; 10, 884-891

    47.Babich J. W., Graham W., Barrow S. A., Dragotakes S. C., Tompkins R. H., Rubin R. H., and Fischman A. J., Technetium-labeled chemotactic peptides: comparison with Indium-111-labeled white blood cells for localizing acute bacterial infection in the rabbit. J. Nucl. Med. 1993; 34, 2176-2181

    48.Liu S., Edwards D. S., Looby R. J., Harris A. R., Poirier M. J., Barrett J. A., Heminway S. J., and Carroll T. R., Labeling a hydrazino nicotinamide-modified cyclic IIb/IIIa receptor antagonist with 99mTc using aminocarboxylates as coligands. Bioconjugate Chem. 1996; 7, 63-71

    49.Edwards D. S., Liu S., Harris A. R., Looby R. J., Ziegler M. C., Heminway S. J., Barrett J. A., and Carroll T. R., A new and versatile ternary ligand system for technetium radiopharmaceuticals: water soluble phosphines and tricine as coligands in labeling a hydrazino nicotinamidemodified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjugate Chem. 1997; 8, 146-154

    50.Liua G., Wescottb C., Satob A., Wanga Y., Liua N., Zhanga Y. M., Rusckowskia M., Hnatowicha D. J., Nitriles form mixed-coligand complexes with 99mTc-HYNIC-Peptide. Nuclear Medicine and Biology 2002; 29, 107–113

    51.Alberto R., Schibli R., Egli A., et al. A novel organometallic aquacomplex of technetium for the labeling of technetium for the labeling of technetium for the labeling of of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with bifunctional ligands. J. Am. Chem. Soc. 1998; 120, 7987-7988

    52.Amann A., Decristoforo C., Ott I., Wenger M., Bader D., Alberto R., and Putz G., Surfactant protein B labeled with [99mTc(OH2) 3(CO)3]+ retains biological activity in vitro. Nuclear Medicine and Biology. 2001; 28, 243-250

    53.Pietzsch H. J., Gupta A., Reisgys M., et al., Chemical and Biological characterization of technetium(I) and rhenium(I) tricarbonyl complexes with dithioether ligands serving as linkers for coupling the Tc(CO)3 and Re(CO)3 moieties to biologically active molecules. Bioconjugate Chem. 2000; 11, 414-424

    54.Schibli R., La Bella R., Alberto R., et al., Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem. 2000; 11, 345-351

    55.Liu S. and Edwards D. S., 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chemical. Review. 1999; 99, 2235-2268

    56.Su Z. F., Liu G., Gupta S., Zhu Z., Rusckowski M., and Hnato D. J., In Vitro and in Vivo Evaluation of a Technetium-99m-Labeled Cyclic RGD Peptide as a Specific Marker of avb3 Integrin for Tumor Imaging. Bioconjugate Chem. 2002; 13, 561-570

    57.江昭志〝三羰基鎝99m標誌MISO錯合物作為缺氧造影劑之研究〞,清華大學碩士論文,2002。

    58.Microbiology, Third edition, Klein P. H., WCB Company, 1996, p.117

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE