簡易檢索 / 詳目顯示

研究生: 陳昶利
Chen, Chang-Li
論文名稱: Neumann 問題與曲面偏微分方程的有限元素法
A finite element method for Neumann problems and surface PDEs
指導教授: 朱家杰
Chu, Chia-Cheih
口試委員: 吳金典
Wu, Chin-Tien
薛名成
Shiue, Ming-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 12
中文關鍵詞: Neumann問題有限元素法不吻合網格
外文關鍵詞: Neumann problem, Finite element method, unfitted mesh
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章裡,我們使用有限元素法來解定義在不規則定義域上的Neumann 問題。我們從定義在曲線上的偏微分方程出發,並且使用與曲線邊界不吻合的均勻笛卡爾網格。在這個方法中,方程式的邊界條件會被一個定義域內的節點上的函數值的線性組合所取代。我們使用線性以及二次的有限元素法在與邊界不吻合的網格上,而無論定義域的邊界是如何割過元素,方程式離散化之後產生的線性系統都會是穩定的。我們也從能量範數的角度給出誤差分析,並且展示幾個數值範例。


    In this thesis, we consider a finite element method to solve partial differential equations on a irregular domain with Neumann boundary condition. In particular, we start with partial differential equations defined on curves. Instead of curve fitted meshes, we use Cartesian grids that do not fit the curved boundary. The boundary condition is replaced by a linear constraint on inner nodes. We apply both piecewise linear and quadratic element on unfitted meshes. The resulted linear system is stable whenever the boundary cut though the elements. We give error estimate on energy norm and show some numerical examples.

    1 Introduction 2 2 The technique 3 2.1 A PDE on a curve . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 A General Neumann problem . . . . . . . . . . . . . . . . . . . . 6 3 Error estimate 7 4 Numerical example 9 5 Conclusion 12

    [1] John W Barrett and Charles M Elliott. A nite-element method for solving
    elliptic equations with neumann data on a curved boundary using un tted
    meshes. IMA Journal of Numerical Analysis, 4(3):309{325, 1984.
    [2] Jay Chu and Richard Tsai. Volumetric variational principles for a class of
    partial di erential equations de ned on surfaces and curves. arXiv preprint
    arXiv:1706.02903, 2017.
    [3] Heinz-Otto Kreiss, N Anders Petersson, and Jacob Ystrom. Di erence approximations
    of the neumann problem for the second order wave equation.
    SIAM Journal on Numerical Analysis, 42(3):1292{1323, 2004.

    QR CODE