簡易檢索 / 詳目顯示

研究生: 周瑞源
Jou, Ruei-Yuan
論文名稱: 一個高效能影像轉換引擎藉由採用同時正向與反向離散餘弦轉換
A High Performance Video Transform Engine by Using Simultaneous Forward and Inverse DCT
指導教授: 張慶元
Chang, Tsin-Yuan
口試委員: 張慶元
Chang, Tsin-Yuan
黃元豪
謝明得
陳竹一
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 即時影像排序時間交錯
外文關鍵詞: DCT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    在本篇研究裡,提出了可以同時正向與反向離散餘弦轉換(Discrete Cosine
    Transform)。利用我們所提出的排序與時間交錯的方法,可以達到低成本和高輸出量。在一般傳統的影像編碼系統中,正向與反向DCT必須要同時運行,才可以滿足即時(Real-Time) 影像編碼,所以本篇所提出的架構可以滿足同時運行DCT 與IDCT,且本篇有三個主要的優點,第一,本篇所提出的架構可以同時運行DCT 與IDCT這兩個轉換,第二,本篇可以滿足即時影像編碼系統的需求,第三,本編所提出的排序與時間交錯的方法可以達到低成本與高輸出量,藉由需要一個一維DCT與IDCT電路與轉制記憶體(Transpose Memory)就可以達到同時運DCT 與IDCT的效果。本篇所提出的架構可以支援MPEG-1/2/4的影像壓縮標準與滿足IEEE IDCT 1180-1990的精確度標準,採用TSMC 0.18-um 1P6M CMOS 技術;而在量測結果中顯示了當運行在同時正向與反向DCT的模式下最大的時脈(Clock)可以達到200MHz,而且面積包含19.65K的邏輯閘和最大的輸出量可以達到400Mpixel/sec;由於在本篇整個的設計裡,僅需要一個一維的DCT/IDCT電路和轉制記憶體(Transpose Memory),就可以達到同時計算於DCT和IDCT的一維與二維資料流和同時計算於DCT 與IDCT轉換,並且利用本篇提出的方法,可讓Register 使用度達到100%,且本篇所提出的硬體,可支援於即時(Real-Time)影像系統HDTV(1920×1080P@60HZ)的規格。


    Abstract
    In this thesis, the proposed simultaneous forward and inverse discrete cosine transform (DCT) core exploits sorting and butterfly method that can be cost-efficient implemented. In real-time video encoder, the forward and inverse transforms are needed to be executed simultaneously. The proposed architecture has three advantages: First, multi-function work in DCT/IDCT can be simultaneously computed. Second, it can support real-time system in video encoder. Third, it exploits sorting and butterfly method by only one 1-D core and a transpose memory (TM), which can simultaneously compute two types of DCT and IDCT. Supporting MPEG-1/2/4 standards in video format as well as IEEE IDCT standard precision, the proposed design is implemented in a TSMC 0.18-um 1P6M CMOS technology. Measurement results show clock rate of 200M/sec while operated in simultaneous forward and inverse DCT mode and resultant circuit includes 19.65K logic gates with maximum throughput rate of 400Mpixel/sec. The proposed architecture can support HDTV video (1920×1080P@60 HZ) requirement operated in real-time video encoder.

    1 介紹與研究動機 1.1 介紹 1.2 研究動機 1.3 前人提出的方法 1.4 本篇論文貢獻 1.5 本篇論文內容 2 提出的同時正向與反向DCT 架構 2.1 二維DCT/IDCT 演算法 2.2 一維DCT/IDCT 行列重組 2.3 提出的同時正向與反向DCT 矩陣 2.3.1 提出的偶部矩陣 2.3.2 提出的奇部矩陣 2.4 提出的同時正向與反向DCT 硬體架構 2.4.1 提出的資料產生單元(DGU) 硬體架構 2.4.2 提出的偶部(E) 硬體架構 2.4.3 提出的奇部(O) 硬體架構 2.4.4 提出的反資料產生器(IDGU) 硬體架構 2.4.5 提出的同時運算DCT 和IDCT 硬體架構 3 模擬結果與實體下線硬體規格 3.1 軟體模擬結果 3.2 實體下線硬體規格與量測結果 3.3 FPGA 驗證 3.4 比較 4 結論與未來發展 4.1 結論 4.2 未來發展 參考目錄

    [1] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, M.
    Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai, “ A
    0.9v , 150-MHz, 10-mw4mm2 , 2-D Discrete Cosine Transform Core Processor with
    VariableThreshold-Voltage(VT) Scheme, ” IEEE J. Solid-State Circuit., vol. 31, pp.
    1770-1779, Nov. 1996.
    [2] C. Y. Huang, L.F. Chen, and Y. K. Lai, “ A High-Speed 2-D Transform Architecture
    with Uique Kernel for Multi-Standard Video Applications, ” in Proc. IEEE Int.
    Symp. Circuits Syst., 2008, pp. 21-24.
    [3] D. Gong, Y. He, and Z. Cao, “ New Cost-Effective VLSI Implementation of a 2-
    D Discrete Cosine Transform and Its Inverse, ” IEEE Trans. Circuits Syst. Video
    Technol., vol. 14, pp. 405-415, Apr. 2004.
    [4] S. C. Hsia and S. H. Wang,“ Shift-Register-Based Data Transposition for Cost-
    Effective Discrete Cosine Transform, ” IEEE Trans. VLSI Syst., vol. 15, pp. 725-728,
    Jun. 2007.
    [5] N. J. August and D. S. Ha , “ Low Power Design of DCT and IDCT for Low Bit
    Rate Video Codecs, ” IEEE Trans. Multimedia, vol. 6, pp. 414-422, Jun. 2004.
    [6] J. I. Guo, R. C. Ju, and J. W. Chen, “ An Efficient 2-D DCT/IDCT Core Design
    Using Cyclic Convolution and Adder-Based Realization, ” IEEE Trans. Circuits Syst.
    Video Technol., vol. 14, pp. 416-428, Apr. 2004.
    [7] A. Madisetti and A. N. Wilson Jr, “ A 100 Mhz 2-D 8×8 DCT/IDCTprocessor for
    HDTV applications, ” IEEE Trans. Circuits Syst. VideoTechnol., vol. 5, pp. 158-165,
    Apr. 1995.
    [8] G. A. Ruiz, J. A. Michell, and A. M. Buron, “ Parallel-Pipeline 8×8 Forward 2-D
    ICT processor Chip for Image Coding, ” IEEE Trans. Signal Processing, vol. 53, pp.
    714-723, Feb. 2005.
    [9] K. H. Chen, J. I. Guo, J. S. Wang, and C. W. Yeh, “ An Energy- Aware IP Core
    Design for the Variable-Length DCT/IDCT Targeting at MPEG4 Shape-Adaptive
    Transforms, ” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 704-715, May
    2005.
    [10] J. Lee, N. Vijaykrishnan, and M. J. Irwin, “ Inverse Discrete Cosine Transform
    Architecture Exploiting Sparseness and Symmetry Properties, ” IEEE Trans. Circuits
    Syst. Video Technol., vol. 16, pp. 655-662, May 2006.
    [11] A. M. Shams, A. Chidanandan, W. Pan, and M. A. Bayoumi, “ NEDA: A Low-Power
    High-Performance DCT Architecture, ” IEEE Trans. Signal Processing, vol. 54, pp.
    955-963, Mar. 2006.
    [12] C. T. Lin, Y. C. Yu, and L. D. Van, “ An Efficient Unified Framework for Implementation
    of a Prime-Length DCT/IDCTWith High Throughput, ” IEEE Trans. Signal
    Processing, vol. 55, pp. 2925-2936, Jun. 2007.
    [13] C. T. Lin, Y. C. Yu, and L. D. Van, “ Cost-Effective Triple-Mode Reconfigurable
    Pipeline FFT/IFFT/2-D DCT Processor, ” IEEE Trans. VLSI Syst., vol. 16, pp.
    1058-1071, Aug. 2008.
    [14] H. C. Hsu, K. B. Lee, N. Y. Chang, and T. S. Chang., “ Architecture Design of Shape-
    Adaptive Discrete Cosine Transform and Its Inverse for MPEG-4 Video Coding, ”
    IEEE Trans. Circuits Syst. Video Technol., vol. 18, pp. 375-386, Mar. 2008.
    [15] T. S. Chang, C. S. Kung, and C. W. Jen, “ A Simple Processor Core Design for DCT/
    IDCT, ” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 439-447, Apr. 2000.
    [16] M. Alam, W.Badawy, and G. Jullien, “ A New Time Distributed DCT Architecture
    for MPEG-4 Hardware Reference Model, ” IEEE Trans. Circuits Syst. Video
    Technol., vol. 15, pp. 726-730, May 2005.
    [17] W. B. Pennebaker and J. L. Mitchell, “ JPEG Still Image Data Compression Standard,
    New York : Van Nostrand Reinhold, 1992.
    [18] Information Technology-Digital Compression and Coding of Continuous-Tone Still
    Images: Requirements and Guidelines, ISO/IEC 10918-1, 1991.
    [19] W. Pan, “ A Fast 2-D DCT Algorithm Via Distributed Arithmetic Optimization, ”
    in Proc. IEEE Int. Conf. Image Process., vol. 3, pp. 114-117, 2000.
    [20] Y. P. Lee, T. H. Chen, L. G. Chen, M. J. Chen, and C. W. Ku, “ A Cost-Effective
    Architecture for 8×8 Two-Dimensional DCT/IDCT Using Direct Method, ” IEEE
    Trans. Circuits Syst. Video Technol., vol. 7, pp. 459-467, Jun. 1997.
    [21] C. Peng, X. Cao, D. Yu, and X. Zhang, “ A 250 MHz Optimized Distrubuted Architecture
    of 2D 8×8 DCT, ” in Proc. Int. Conf. ASIC, pp. 189-192, 2007.
    [22] IEEE Standard Specifications for the Implementations of 8×8 Inverse Discrete Cosine
    Transform, IEEE Std. 1180-1990, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE