研究生: |
莊智麟 Chuang, Chih-Lin |
---|---|
論文名稱: |
動態多目標最佳化方法應用於感知無線電物聯網之能源使用與頻譜分配 Dynamic Multiobjective Approach to Power and Spectrum Allocation in Cognitive Radio Based Internet of Things |
指導教授: |
邱偉育
Chiu, Wei-Yu |
口試委員: |
曾柏軒
Tseng, Po-Hsuan 簡鳳村 Chien, Feng-Tsun 陸敬互 Lu, Ching-Hu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 動態多目標最佳化 、能源效率 、公平性 、頻譜利用率 、資源分配 、物聯網 、感知無線電 |
外文關鍵詞: | Dynamic multiobjective optimization, energy efficiency, fairness, spectrum utilization, resource allocation, Internet of Things (IoT), cognitive radio (CR) |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
感知無線電是一項頗具希望解決物聯網資源缺乏問題之技術。然而在感知無線電物聯網中,當可用資源改變時,現存資源分配算法通常會在不使用歷史資訊的情況下重新啟動最佳化;此外,它們主要著重於一個或兩個目標函數,其中一些更僅針對純功率控制或純頻譜分配,限制了感知無線電物聯網的潛力。本論文研究了一種動態多目標方法應用於感知無線電物聯網之能源使用與頻譜分配,其中可用頻譜通道隨時間改變,且多個目標函數包含在內。我們制定了一個以能源效率,公平性和頻譜利用率為目標之動態多目標最佳化問題,並採用了柏拉圖最適性。我們提出一種由混合初始化方法和可行解生成機制所組成之動態資源分配算法,以解決動態多目標最佳化問題。為了動態調整資源,我們將歷史近似柏拉圖最佳解以質心和副本表示,並用於預測新的最佳解。與類似之多目標資源分配算法相比,所提出之方法可以達到更好的收斂水平和收斂速度。與傳統之單目標方法相比,它亦能於目標間取得出色的平衡。
Cognitive radio (CR) is a promising technology to address resource scarcity in Internet of Things (IoT). In CRbased IoT, however, existing resource allocation algorithms normally restart optimization processes without utilizing historical information when the availability of resources changes; in addition, they mostly focus on one or two objectives and some of them only address pure power control or pure spectrum allocation, limiting the potential of CRbased IoT. This paper thus investigates a dynamic multiobjective approach to power and spectrum allocation in a CRbased IoT environment in which available spectrum channels vary over time and multiple objectives are involved. A dynamic multiobjective optimization problem (MOP) with energy efficiency, fairness, and spectrum utilization as objectives is formulated and Pareto optimality is adopted. A dynamic resource allocation algorithm consisting of a hybrid initialization method and feasible point generation is proposed to solve the dynamic MOP. To dynamically adjust resources, historical approximate Pareto optimal solutions are represented by a center and a manifold and used to predict new optima. The proposed approach can yield a better convergence level and convergence rate than those attained by comparable multiobjective resource allocation algorithms; it also achieves an excellent balance between the objectives as compared with conventional singleobjective approaches.
[1] A. Aijaz and A. H. Aghvami, “Cognitive machinetomachine communications for InternetofThings: A protocol stack perspective,” IEEE Internet Things J., vol. 2, pp. 103–112, Apr. 2015.
[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware computing for the Internet of Things: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 414–454, 2014.
[3] P. Rawat, K. D. Singh, and J. M. Bonnin, “Cognitive radio for M2M and Internet of Things: A survey,” Comput. Commun., vol. 94, pp. 1–29, Nov. 2016.
[4] S. Byun, I. Balasingham, and X. Liang, “Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency,” in Proc. IEEE Veh. Technol. Conf., (Calgary, Alberta, Canada), pp. 1–5, Sept. 2008.
[5] J. Ren, Y. Zhang, N. Zhang, D. Zhang, and X. Shen, “Dynamic channel access to improve energy efficiency in cognitive radio sensor networks,” IEEE Trans. Wireless Commun., vol. 15, pp. 3143–3156, May. 2016.
[6] S. Haykin, “Cognitive radio: Brainempowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, pp. 201–220, Feb. 2005.
[7] A. Ahmad, S. Ahmad, M. H. Rehmani, and N. U. Hassan, “A survey on radio resource allocation in cognitive radio sensor networks,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 888–917, 2015.
[8] J. M. Alfonso and L. B. Agudelo, “Centralized spectrum broker and spectrum sensing with compressive sensing techniques for resource allocation in cognitive radio networks,” in Proc. IEEE LatinAmerica Conf. Commun., (Santiago, Chile), pp. 1–6, Nov. 2013. [9] E. Z. Tragos, S. Zeadally, A. G. Fragkiadakis, and V. A. Siris, “Spectrum assignment in cognitive radio networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1108–1135, 2013.
[10] E. Ahmed, A. Gani, S. Abolfazli, L. J. Yao, and S. U. Khan, “Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 795–823, 2016.
[11] H. A. B. Salameh, S. AlMasri, E. Benkhelifa, and J. Lloret, “Spectrum assignment in hardwareconstrained cognitive radio IoT networks under varying channelquality conditions,” IEEE Access, vol. 7, pp. 42816–42825, Mar. 2019.
[12] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long, “Cognitive Internet of Things: A new paradigm beyond connection,” IEEE Internet Things J., vol. 1, pp. 129–143, Apr. 2014. 36
[13] A. A. Khan, M. H. Rehmani, and A. Rachedi, “When cognitive radio meets the Internet of Things?,” in Proc. Int. Wireless Commun. Mobile Comput. Conf., (Paphos, Cyprus), pp. 469– 474, Sept. 2016.
[14] M. Nitti, M. Murroni, M. Fadda, and L. Atzori, “Exploiting social Internet of Things features in cognitive radio,” IEEE Access, vol. 4, pp. 9204–9212, Dec. 2016.
[15] A. A. Khan, M. H. Rehmani, and A. Rachedi, “Cognitiveradiobased Internet of Things: Applications, architectures, spectrum related functionalities, and future research directions,” IEEE Trans. Wireless Commun., vol. 24, pp. 17–25, June 2017.
[16] F. A. Awin, Y. M. Alginahi, E. AbdelRaheem, and K. Tepe, “Technical issues on cognitive radiobased Internet of Things systems: A survey,” IEEE Access, vol. 7, pp. 97887–97908, July 2019.
[17] M. Cui, B. Hu, X. Li, H. Chen, S. Hu, and Y. Wang, “Energyefficient power control algorithms in massive MIMO cognitive radio networks,” IEEE Access, vol. 5, pp. 1164–1177, Jan. 2017.
[18] P. Bhardwaj, A. Panwar, O. Ozdemir, E. Masazade, I. Kasperovich, A. L. Drozd, C. K. Mohan, and P. K. Varshney, “Enhanced dynamic spectrum access in multiband cognitive radio networks via optimized resource allocation,” IEEE Trans. Wireless Commun., vol. 15, pp. 8093–8106, Dec. 2016.
[19] D. Zhang, Z. Chen, J. Ren, N. Zhang, M. K. Awad, H. Zhou, and X. S. Shen, “Energyharvestingaided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network,” IEEE Trans. Veh. Technol., vol. 66, pp. 831–843, Jan. 2017.
[20] C. C. Zarakovitis and Q. Ni, “Maximizing energy efficiency in multiuser multicarrier broadband wireless systems: Convex relaxation and global optimization techniques,” IEEE Trans. Veh. Technol., vol. 65, pp. 5275–5286, July 2016.
[21] B. Gu, C. Zhang, H. Wang, Y. Yao, and X. Tan, “Power control for cognitive M2M communications underlaying cellular with fairness concerns,” IEEE Access, vol. 7, pp. 80789–80799, Apr. 2019.
[22] N. Zhao, F. R. Yu, H. Sun, and M. Li, “Adaptive power allocation schemes for spectrum sharing in interferencealignmentbased cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 65, pp. 3700–3714, May 2016.
[23] M. R. Mili, L. Musavian, K. A. Hamdi, and F. Marvasti, “How to increase energy efficiency in cognitive radio networks,” IEEE Trans. Commun., vol. 64, pp. 1829–1843, May 2016.
[24] R. Han, Y. Gao, C. Wu, and D. Lu, “An effective multiobjective optimization algorithm for spectrum allocations in the cognitiveradiobased Internet of Things,” IEEE Access, vol. 6, pp. 12858–12867, Jan. 2018. 37
[25] N. Zhang, H. Liang, N. Cheng, Y. Tang, J. W. Mark, and X. S. Shen, “Dynamic spectrum access in multichannel cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 32, pp. 2053–2064, Nov. 2014.
[26] Z. Wei and B. Hu, “A fair multichannel assignment algorithm with practical implementation in distributed cognitive radio networks,” IEEE Access, vol. 6, pp. 14255–14267, Feb. 2018.
[27] A. Alabbasi, Z. Rezki, and B. Shihada, “Energy efficient resource allocation for cognitive radios: A generalized sensing analysis,” IEEE Trans. Wireless Commun., vol. 14, pp. 2455– 2469, May. 2015.
[28] J. A. Ansere, G. Han, H. Wang, C. Choi, and C. Wu, “A reliable energy efficient dynamic spectrum sensing for cognitive radio IoT networks,” IEEE Access, vol. 6, pp. 6748–6759, Aug. 2019.
[29] A. Shahini, A. Kiani, and N. Ansari, “Energy efficient resource allocation in EHenabled CR networks for IoT,” IEEE Internet Things J., vol. 6, pp. 3186–3193, Apr. 2019.
[30] S. Mei, B. Chen, F. Hu, and Z. Ma, “Hybrid network coding scheme in cognitive radio networks with multiple secondary users,” IEEE Access, vol. 6, pp. 63948–63957, Oct. 2018.
[31] A. Ali and W. Hamouda, “Advances on spectrum sensing for cognitive radio networks: Theory and applications,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 1277–1304, 2017.
[32] M. Naeem, A. Anpalagan, M. Jaseemuddin, and D. C. Lee, “Resource allocation techniques in cooperative cognitive radio networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 729–744, 2014.
[33] H. SHI, R. V. Prasad, E. Onur, and I. G. M. M. Niemegeers, “Fairness in wireless networks: Issues, measures and challenges,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 5–24, 2014.
[34] A. Kaur, A. Kaur, and S. Sharma, “Cognitive decision engine design for CR based IoTs using differential evolution and bat algorithm,” in Proc. Int. Conf. Signal Process. Integrated Netw., (Noida, India), pp. 130–135, Feb. 2018.
[35] K. K. Anumandla, B. Akella, S. L. Sabat, and S. K. Udgata, “Spectrum allocation in cognitive radio networks using multiobjective differential evolution algorithm,” in Proc. Int. Conf. Signal Process. Integrated Netw., (Noida, India), pp. 264–269, Feb. 2015.
[36] Ö. Yeniay, “Penalty function methods for constrained optimization with genetic algorithms,” Math. Comput. Appl., vol. 10, no. 1, pp. 45–56, 2005.
[37] K. Zhang, S. Leng, X. Peng, L. Pan, S. Maharjan, and Y. Zhang, “Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks,” IEEE Internet Things J., vol. 6, pp. 1987–1997, Apr. 2019.
[38] Z. Jin, K. Yao, B. Lee, J. Cho, and L. Zhang, “Channel status learning for cooperative spectrum sensing in energyrestricted cognitive radio networks,” IEEE Access, vol. 7, pp. 64946– 64954, May 2019. 38
[39] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for evolutionary dynamic multiobjective optimization,” IEEE Trans. Cybern., vol. 44, pp. 40–53, Jan. 2014.
[40] B. Xu, Y. Zhang, D. Gong, Y. Guo, and M. Rong, “Environment sensitivitybased cooperative coevolutionary algorithms for dynamic multiobjective optimization,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 15, pp. 1877–1890, Nov. 2018.
[41] R. Azzouz, S. Bechikh, and L. B. Said, “Dynamic multiobjective optimization using evolutionary algorithms: A survey,” Recent Advances Evol. Multiobjective Optim., vol. 20, pp. 31–70, Aug. 2017.
[42] W. Ejaz and M. Ibnkahla, “Multiband spectrum sensing and resource allocation for IoT in cognitive 5G networks,” IEEE Internet Things J., vol. 5, pp. 150–163, Feb. 2018.
[43] E. Pei, L. Li, W. Cheng, and J. Jiang, “An energy efficient spectrum sensing algorithm in EHHCRSN,” IEEE Access, vol. 6, pp. 63021–63032, Oct. 2018.
[44] Y. Gao, H. He, Z. Deng, and X. Zhang, “Cognitive radio network with energyharvesting based on primary and secondary user signals,” IEEE Access, vol. 6, pp. 9081–9090, Jan. 2018.
[45] G. Hattab and M. Ibnkahla, “Multiband spectrum access: Great promises for future cognitive radio networks,” Proc. IEEE, vol. 102, pp. 282–306, Mar. 2014.
[46] D. Li, J. Cheng, and V. C. M. Leung, “Adaptive spectrum sharing for halfduplex and fullduplex cognitive radios: From the energy efficiency perspective,” IEEE Trans. Commun., vol. 66, pp. 5067–5080, Nov. 2018.
[47] A. Li and G. Han, “Fullduplexbased control channel establishment for cognitive Internet of Things,” IEEE Commun. Mag., vol. 57, pp. 70–75, Mar. 2019.
[48] M. Amjad, F. Akhtar, M. H. Rehmani, M. Reisslein, and T. Umer, “Fullduplex communication in cognitive radio networks: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2158–2191, 2017.
[49] J. Zhu, Y. Song, D. Jiang, and H. Song, “Multiarmed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the Internet of Things,” IEEE Access, vol. 4, pp. 4609–4617, Aug. 2016.
[50] P. Lin, J. Jia, Q. Zhang, and M. Hamdi, “Dynamic spectrum sharing with multiple primary and secondary users,” IEEE Trans. Veh. Technol., vol. 60, pp. 1756–1765, May 2011.
[51] M. Costa and A. Ephremides, “Energy efficiency versus performance in cognitive wireless networks,” IEEE J. Sel. Areas Commun., vol. 34, pp. 1336–1347, May. 2016.
[52] J. Cho, Y. Wang, I. Chen, K. S. Chan, and A. Swami, “A survey on modeling and optimizing multiobjective systems,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1867–1901, 2017. 39
[53] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey of multiobjective optimization in wireless sensor networks: Metrics, algorithms, and open problems,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 550–586, 2017.
[54] K. Deep and M. Thakur, “A new crossover operator for real coded genetic algorithm,” Appl. Math. Comput., vol. 188, no. 1, pp. 895–911, 2007.
[55] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGAII,” IEEE Trans. Evol. Comput., vol. 6, pp. 182–197, Apr. 2002.
[56] W. Chiu, G. G. Yen, and T. Juan, “Minimum manhattan distance approach to multiple criteria decision making in multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 20, pp. 972–985, Dec. 2016.