簡易檢索 / 詳目顯示

研究生: 阮韶銘
Siu Ming Yuen
論文名稱: 多壁碳奈米管/高分子奈米複合材料之製備與性質研究
Study on the Preparation and Characterization of Mutilwalled Carbon Nanotube/ Polymer Nanocomposites
指導教授: 馬振基
Chen-Chi M. Ma
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 401
中文關鍵詞: 碳奈米管表面改質奈米複合材料聚醯亞胺環氧樹脂聚甲基丙烯酸甲脂XPS拉曼光譜,SEMTEM機械性質導電性熱性質
外文關鍵詞: Multiwalled carbon nanotube, surface modification, nanocomposites, polyimide, epoxy, PMMA, XPS, Raman spectroscopy, SEM, TEM, mechanical properties, electrical resistivity, thermal conductivity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討多壁碳奈米管(Multiwalled Carbon Nanotube, MWCNT)之表面改質及不同改質方法對多壁碳奈米管/高分子奈米複合材料性質之影響。針對不同的高分子基材,多壁碳奈米管以不同的方式進行表面改質。將改質之多壁碳奈米管分別加入聚醯亞胺,環氧樹脂及聚甲基丙烯酸甲酯中,製備成不同之多壁碳奈米管/聚醯亞胺,環氧樹脂及聚甲基丙烯酸甲酯等奈米複合材料,並探討其分子運動性,形態學,導電性,機械性質及熱性質。本研究共分為四部份。
    本研究第一部份為多壁碳奈米管分別以硫酸/硝酸之混酸,自由基(free radical),如vinyltriethoxysilane (VTES)改質。而酸改質之多壁碳奈米管分別接枝胺,可溶性聚醯亞胺由(4,4’-(Hexafluoroisopropylidene) diphthalic anhydride(6FDA)與4,4’-Diphenylmethane diisocyanate(MDI)反應而合成) 及矽醇(3-isocyanato-propyltriethoxysilane, IPTES and (3-aminopropyl) triethoxy-silane, APTES)。改質之多壁碳奈米管以FT-IR, Raman spectrum and X-ray photoelectron spectroscopy (XPS)鑑定其結構。未改質及各種已改質之多壁碳奈米管分別與聚醯亞胺混摻,製備成多壁碳奈米管/聚醯亞胺奈米複合材料。
    SEM及TEM電子顯微鏡照片顯示未改質多壁碳奈米管在聚醯亞胺基材中呈聚集狀態,而酸改質,胺接枝及可溶性聚醯亞胺接枝多壁碳奈米管在聚醯亞胺基材中分散均勻,矽醇改質多壁碳奈米管在聚醯亞胺基材中互相連接而聚醯亞胺分子則互穿於多壁碳奈米管網狀結構中。聚醯亞胺之表面及體積電阻因為多壁碳奈米管的加入而下降,其機械性質則因為多壁碳奈米管的加入而上升。
    酸改質多壁碳奈米管接枝上矽醇(3-isocyanato-propyltriethoxysilane(IPTES)及(3-aminopropyl)triethoxy- silane (APTES)及未改質多壁碳奈米管以自由基反應接枝上vinyltriethoxysilane(VTES)。矽醇改質之多壁碳奈米管加入至聚醯亞胺酸中,在300℃閉環時,聚醯亞胺酸閉環而成聚醯亞胺,同時矽醇改質多壁碳奈米管表面之矽醇則縮合,使多壁碳奈米管互相連接而成為多壁碳奈米管網狀結構,聚醯亞胺分子則互穿於多壁碳奈米管網狀結構中。其體積電阻因矽醇改質多壁碳奈米管的加入而明顯下降,在相同之多壁碳奈米管含量下,其下降幅度比加入酸改質多壁碳奈米管更為明顯。
    第二部份為在多壁碳奈米管/環氧樹脂奈米複合材料,未改質多壁碳奈米管及矽醇改質多壁碳奈米管(IPTES)與環氧樹脂摻混,從SEM電子顯微鏡觀察,未改質之多壁碳奈米管在環氧樹脂基材中聚集。環氧樹脂之表面電阻及其體積電阻因多壁碳奈米管的加入而下降。本研究以3-isocyanato-propyltriethoxysilane (IPTES)接枝上DGEBA-type之環氧樹脂及酸改質多壁碳管,將兩者混合,加入交聯劑製備而成矽醇改質多壁碳奈米管(IPTES-MWCNT)/環氧樹脂奈米複合材料。SEM及TEM電子顯微鏡顯示矽醇改質多壁碳奈米管在環氧樹脂中分散均勻,固態13C NMR顯示加入1.0wt%矽醇改質多壁碳奈米管之環氧樹脂之分子運動性下降。以DSC測試之環氧樹脂之玻璃轉移溫度從192.6℃(接枝上IPTES之環氧樹脂)上升至212.5℃ (1.0wt% IPTES-MWCNT)。以DMA測試之環氧樹脂在50℃下之儲存模數(storage modulus)因矽醇改質多壁碳奈米管的加入而上升。環氧樹脂加入1.0wt%矽醇改質多壁碳奈米管,其拉伸及抗折強度分別增加41.65%及145.7%;環氧樹脂加入0.8wt%矽醇改質多壁碳奈米管,其楊氏係數及抗折模數分別增加52.8%及31.1%。
    第三部份為多壁碳奈米管以溶膠-凝膠法包覆上一層二氧化鈦,並以矽醇(3-(aminopropyl)triethoxysilane ,APTES)改質二氧化鈦包覆之多壁碳奈米管(AT-MWCNT)並以X-ray photoelectron spectroscopy鑑定,將AT-MWCNT加入DGEBA-type之環氧樹脂中,硬化而成二氧化鈦包覆多壁碳奈米管/環氧樹脂奈米複合材料。其中經過APTES改質之二氧化鈦包覆多壁碳奈米管表面含有胺官能基,能與環氧樹脂反應。二氧化鈦包覆多壁碳奈米管對環氧樹脂之補強效果比未改質多壁碳奈米管優異。在二氧化鈦包覆之多壁碳奈米管系統中,提升二氧化鈦的含量,以X-ray photoelectron spectroscopy (XPS)及X-ray diffraction (XRD) 鑑定二氧化鈦包覆多壁碳奈米管,而環氧樹脂則選用矽醇(APTES)作為交聯劑。TEM電子顯微鏡顯示二氧化鈦已包覆在多壁碳奈米管表面,而加入環氧樹脂後仍未脫落,而且二氧化鈦包覆多壁碳奈米管在環氧樹脂基材中分散均勻。環氧樹脂之機械性質因二氧化鈦包覆多壁碳奈米管的加入而明顯提升。
    第四部份為多壁碳奈米管/聚甲基丙烯酸甲酯奈米複合材料,酸改質之多壁碳奈米管接枝上矽醇(3-isocyanato- propyltriethoxysilane, IPTES)。而可交聯之聚甲基丙烯酸甲酯則以甲基丙烯酸甲酯及Vinyltriethoxysilane (VTES)進行共聚合(PMMA-VTES)。矽醇接枝之多壁碳奈米管加入PMMA-VTES基材中而成矽醇接枝多壁碳奈米管/PMMA-VTES奈米複合材料。矽醇之縮合度因矽醇接枝多壁碳奈米管的加入而下降,而矽醇接枝多壁碳奈米管在PMMA-VTES基材中則分散均勻。PMMA-VTES之導電及導熱性都因多壁碳奈米管的加入而上升,而其熱穩定性亦因多壁碳奈米管的加入而明顯增加。


    In this research,multi-walled carbon nanotube(MWCNT) was modified with different conditions. The modified MWCNT was analyzed by FT-IR, Raman spectrum and X-ray photoelectron spectroscopy (XPS). The unmodified and modified MWCNT were added to polyimide, epoxy and PMMA to prepare MWCNT/polyimide, MWCNT/epoxy and MWCNT/PMMA nanocomposites. This dissertation contains four parts.
    The first part was the preparation and characterization of MWCNT/polyimide composites. Unmodified, acid-modified, amine-modified and soluble polyimide grafted multiwalled carbon nanotube (MWCNT) were added separately to the polyamic acid and heated to 300℃ to form polyimide/carbon nanotube composite. SEM and TEM microphotographs show that acid-modified MWCNT, amine-modified and soluble polyimide grafted MWCNT dispersed uniformly in the polyimide matrix. Silane modified MWCNTs formed interpenetrate network in polyimide network. Effect of the MWCNTs on the surface and volume electrical resistivities of the MWCNT/PI composites has been investigated. Mechanical properties of the nanocomposites were enhanced significantly by modified MWCNTs. Acid modified multiwalled carbon nanotubes (MWCNTs) were grafted with 3-isocyanato-propyltriethoxysilane(IPTES) and (3-aminopropyl) triethoxysilane (APTES); Unmodified multiwalled carbon nanotubes (MWCNTs) were grafted with vinyltriethoxysilane(VTES). Silane grafted MWCNTs were then mixed with the polyamic acid(BDTA/ODA) and heated to 300℃ to form a carbon nanotube/polyimide composite. During the imidization processes, the silanes on the MWCNT surface reacted with each other. TEM microphotographs showed that the silane grafted MWCNTs were connected. The composite material possesses an interpenetrating network in which polyimide molecules were interpenetrated into the MWCNT network. The electrical resistivity of silane grafted MWCNT/polyimide decreased very significantly compared to those only containing acid treated MWCNTs for the same loading with MWCNTs.
    The second part was the preparation of MWCNT/epoxy composites, multiwalled Carbon nanotubes (MWCNT)/Epoxy Composites have been prepared. The characteristics and morphological properties were studied. SEM microphotographs showed that MWCNTs were aggregated in the epoxy resin. Epoxy resin and acid modified multiwalled carbon nanotube(MWCNT) were treated with 3-isocyanato- propyltriethoxy-silane (IPTES). SEM and TEM microphotographs of the MWCNT/epoxy composites have been investigated. The molecular motion of silane modified MWCNT/Epoxy composites were studied using high-resolution solid-state 13C NMR. Results show that 1.0wt% silane modified MWCNT/Epoxy exhibits less molecular motion than that of the lower silane modified MWCNT content. Dynamic mechanical analysis (DMA) data of the MWCNT/Epoxy composites showed the storage modulus (at 50℃) and Tgs of the IPTES modified Epoxy increased with IPTES-MWCNT content. Tensile strength and Young’s Modulus of cured silane modified MWCNT(1.0wt%)/Epoxy composites increased significantly comparing to the neat epoxy.
    In the third part, a unique titanium oxide (TiO2) coated multiwalled carbon nanotube(MWCNT)/Epoxy has been prepared. Multiwalled carbon nanotubes were coated with a layer of TiO2 and then modified with 3-(aminopropyl)triethoxysilane (APTES). The TiO2 coated MWCNT and APTES modified TiO2 coated MWCNT(AT-MWCNT) were analyzed by X-ray photoelectron spectroscopy(XPS). The AT-MWCNT was added to the Diglycidyl ether of bisphenol A type epoxy to prepare silane grafted TiO2 coated MWCNT/epoxy composites. The amine functional groups on AT-MWCNT surface reacted with epoxy. Consequently, the adhesion between MWCNT and epoxy was improved. Mechanical properties of the AT-MWCNT/epoxy composites increased dramatically. The TiO2 coated MWCNTs/epoxy system was cured with silane. Silane may react with TiO2 surface and improves the adhesion between the MWCNT and epoxy matrix. X-ray photoelectron spectroscopy and X-ray diffraction (XRD) were utilized to analyze the TiO2 coated MWCNTs. TEM microphotographs showed the effect of titanium (IV) n-butoxide on the morphology of the TiO2 coated MWCNT. The dispersion of TiO2 coated MWCNT in the epoxy matrix is better than that of unmodified MWCNT. Mechanical properties of the MWCNT/epoxy composites were improved significantly by the TiO2 coated MWCNTs.
    The fourth part was the preparation of MWCNT/PMMA composites. Mutiwalled carbon nanotubes (MWCNT) were modified using 3-isocyanato- propyltriethoxysilane (IPTES). Crosslinkable PMMA was prepared from MMA monomer and Vinyltriethoxysilane (VTES) (PMMA-VTES).The IPTES-modified MWCNT (Si-MWCNT) was mixed with the PMMA-VTES copolymer and crosslinked with catalyst to form Si-MWCNT/PMMA-VTES composites. The degree of condensation of tri-distribution structure of the Si-MWCNT/PMMA-VTES composites decreases as the Si-MWCNT content increases. The morphology of the Si-MWCNT/PMMA-VTES composites was analyzed by SEM and TEM. The MWCNTs were well dispersed in the PMMA-VTES matrix. Surface and volume electrical resistivity decreased as the MWCNT content increased. The thermal conductivity of the PMMA-VTES composites increased by 87.5% when 0.99wt% Si-MWCNT content was added to neat PMMA-VTES. The thermal stability of the PMMA-VTES in nitrogen and air increased significantly even when a small quantity (0.5wt%) of Si-MWCNT was added.

    中文摘要 Abstract 謝誌 目錄 Scheme目錄 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 本研究之目的與研究方向 1-3 參考文獻 第二章 基礎理論 2-1 碳奈米管之特性 2-1.1 碳奈米管之基本性質 2-1.2 碳奈米管之種類及個別性質 2-2 碳奈米管的製備方法 2-2-1 火焰生成法 2-2-2 雷射蒸發╱剝離法 2-2-3 電弧放電法 2-2-4 化學氣相沉積法 2-3 碳奈米管的檢測與分析方法 2-3-1 結構分析 2-3-2 吸附性分析 2-4 碳奈米管之純化技術 2-4-1 以氧化法純化多壁碳奈米管 2-4-2 以嵌入觸媒後進行氧化 2-4-3 以離心、過濾及色層析法純化多壁型碳奈米管 2-4-4 單壁碳奈米管之純化 2-5 碳奈米管之表面改質及“溶液”配製 2-5-1 碳奈米管改質 2-5-2 配製碳奈米管有機溶液 2-6 碳奈米管管中化學原理及特性 2-6-1 碳奈米管開口中空管的吸附行為 2-6-2 碳奈米管內的填充 2-6-3“奈米試管” 2-7 碳奈米管的應用 2-8 高分子-碳奈米管複合材料 2-9 參考文獻 第三章 文獻回顧 3-1碳奈米管/環氧樹脂奈米複合材料 3-2 碳奈米管/聚醯亞胺奈米複合材料 3-3 碳奈米管/聚甲基丙烯酸甲酯奈米複合材料 3-4 聚奈米管/PP奈米複合材料 3-5 碳奈米管/PA奈米複合材料 3-6 碳奈米管/PE奈米複合材料 3-7 碳奈米管/PET及PBT奈米複合材料 3-8 其他碳奈米管/高分子奈米複合材料 3-9 參考文獻 第四章 實驗部份 4-1實驗流程 4-2 實驗材料 4-3 實驗儀器設備 4-4 實驗方法 4-4-1多壁碳奈米管表面改質 4-4-2多壁碳奈米管/高分子奈米複合材料之製備 4-5碳奈米管/高分子奈米複合材料之測試 4-5-1多壁碳奈米管╱聚醯亞胺奈米複合材料之結構鑑定及性質 測試 4-5-2 多壁碳奈米管╱聚甲基丙烯酸甲酯奈米複合材料之結構鑑 定及性質測試 4-5-3多壁碳奈米管/環氧樹脂奈米複合材料之性質檢測 第五章 酸改質、胺接技及可溶性聚醯亞胺接枝多壁碳奈米管/聚醯亞胺複合材料 5-1前言 5-2實驗部份 5-2-1 實驗材料 5-2-2 酸改質多壁碳奈米管 5-2-3 胺接枝多壁碳奈米管 5-2-4 可溶性聚醯亞胺接枝多壁碳奈米管 5-2-5 ODA/BTDA聚醯亞胺的前驅物poly(amic acid)之合成 5-2-6多壁碳奈米管╱聚醯亞胺奈米複合材料之製備 5-2-7改質多壁碳奈米管及多壁碳奈米管╱聚醯亞胺奈米複合材料 之結構鑑定及性質測試 5-2-8 1H Nuclear Magnetic Resonance(1H NMR) 5-2-9 掃瞄式電子顯微鏡(scanning electron microscope) 5-2-10 穿透式電子顯微鏡(Transmission electron microscope) 5-2-11 拉伸性質(Tensile properties) 5-2-12 電氣性質(Electrical properties) 5-2-13 玻璃轉移溫度(Glass transition temperature (Tg)) 5-3-1傅立葉轉換紅外線光譜 (Fourier-transform infrared spectroscopy) 5-3-2 可溶性聚醯亞胺接枝多壁碳奈米管之1H NMR光譜 5-3-3 MWCNT/polyimide奈米複合材料之電子顯微鏡(scanning electron microscope, SEM and Transmission electron microscopy, TEM) 5-3-4 多壁碳奈米管/聚醯亞胺奈米複合材料之導電性(Electrical conductivity) 5-3-5 MWCNT/polyimide奈米複合材料之拉伸性質(Tensile properties) 5-3-6 MWCNT/polyimide奈米複合材料之玻璃轉移溫度(Glass transition temperatures,Tgs) 5-4 結論 5-5 參考文獻 第六章 矽醇改質多壁碳奈米管/聚醯亞胺奈米複合材料 6-1 前言 6-2實驗部份 6-2-1 實驗材料 6-2-2 酸改質多壁碳奈米管 6-2-3 以3-Isocyanatopropyltriethoxysilane (IPTES)接枝上酸改質多壁碳奈米管 6-2-4 以(3-Aminopropyl)triethoxysilane (APTES)接枝上酸改質多壁碳奈米管 6-2-5 以Vinyltriethoxysilane (VTES) 接枝上未改質多壁碳奈米管 6-2-6 ODA/BTDA聚醯亞胺的前驅物poly(amic acid)之合成 6-2-7多壁碳奈米管╱聚醯亞胺奈米複合材料之製備 6-2-8改質多壁碳奈米管及多壁碳奈米管╱聚醯亞胺奈米複合材料 之結構鑑定及性質測試 6-2-9 掃瞄式電子顯微鏡(scanning electron microscope) 6-2-10 穿透式電子顯微鏡(Transmission electron microscope) 6-2-11 拉伸性質(Tensile properties) 6-2-12電氣性質(Electrical properties) 6-3 結果與討論 6-3-1傅立葉轉換紅外線光譜 (Fourier-transform infrared spectroscopy) 6-3-2 VTES改質多壁碳奈米管之拉曼光譜(Raman spectrum) 6-3-3 矽醇改質碳奈米管之X-ray photoelectron spectroscopy (XPS) 6-3-4 矽醇改質碳奈米管/聚醯亞胺奈米複合材料之29Si固態核磁 共振分析(29Si solid state nuclear magnetic resonance (NMR)) 6-3-6 矽醇改質碳奈米管/聚醯亞胺奈米複合材料之導電性質 6-3-7 矽醇改質碳奈米管/聚醯亞胺奈米複合材料之機械性質 6-4結論 第七章 多壁碳奈米管/環氧樹脂複合材料 7-1 前言 7-2 實驗部分 7-2-1 實驗藥品 7-2-2 多壁碳奈米管/環氧樹脂奈米複合材料之製備 7-2-3 多壁碳奈米管/環氧樹脂奈米複合材料之性質檢測 7-5 結果與討論 7-5-1多壁碳奈米管/環氧樹脂奈米複合材料之形態觀察 7-5-2 多壁碳奈米管/環氧樹脂奈米複合材料之熱性質分析 7-5-3多壁碳奈米管/環氧樹脂奈米複合材料之電性分析 7-5結論 7-6 參考文獻 第八章 矽醇改質碳奈米管/環氧樹脂奈米複合材料 8-1前言 8-2 實驗部份 8-2-1 實驗材料 8-2-2 多壁碳奈米管之表面改質 8-2-3 多壁碳奈米管/環氧樹脂奈米複合材料之製備 8-2-4 多壁碳奈米管/環氧樹脂奈米複合材料之性質測試 8-3 結果與討論 8-3-1傅立葉轉換紅外線光譜 (Fourier transform infrared spectroscopy, FT-IR) 8-3-2 X-ray photoelectron spectroscopy (XPS) 8-3-3 多壁碳奈米管/環氧樹脂奈米複合材料之29Si 及13C 固態 NMR分析 8-3-4 多壁碳奈米管/環氧樹脂奈米複合材料之13C NMR CP/MAS 及分子運動性 8-3-5 矽醇改質多壁碳奈米管/環氧樹脂奈米複合材料之玻 璃轉移 溫度 8-3-6 矽醇改質多壁碳奈米管/環氧樹脂奈米複合材料之形態分析 8-3-7 矽醇改質多壁碳奈米管/環氧樹脂奈米複合材料機械性質 8-3-8矽醇改質多壁碳奈米管/環氧樹脂奈米複合材料導電性質 8-4 結論 8-5 參考文獻 第九章 二氧化鈦包覆多壁碳奈米管/環氧樹脂奈米複合材料 9-1前言 9-2實驗部份 實驗流程 9-2-1實驗材料 9-2-2 二氧化鈦包覆多壁碳奈米管 9-2-3 二氧化鈦包覆碳奈米管/環氧樹脂奈米複合材料之製備 9-2-4 二氧化鈦包覆碳奈米管/環氧樹脂奈米複合材料之結構鑑定及性質測試 9-3 結果與討論 9-3-1 X-ray photoelectron spectroscopy (XPS) 9-3-2 二氧化鈦包覆碳奈米管/環氧樹脂奈米複合材料之形態分析 9-3-3 二氧化鈦包覆碳奈米管/環氧樹脂奈米複合材料之機械性質 9-3-4 二氧化鈦包覆碳奈米管/環氧樹脂奈米複合材料之體積電阻 9-4結論 9-5參考文獻 第十章 二氧化鈦包覆多壁碳奈米管/聚倍半矽氧烷 /環氧樹脂奈米複合材料 10-1 前言 10-2-1實驗材料 10-2-2 二氧化鈦包覆多壁碳奈米管 10-2-3 二氧化鈦包覆碳奈米管/聚倍半矽氧烷/環氧樹脂奈米複合材料之製備 10-2-4 二氧化鈦包覆碳奈米管/聚倍半矽氧烷/環氧樹脂奈米複合材料之結構鑑定及性質測試 10-3 結果與討論 10-3-1 X-ray diffraction (XRD) 10-3-2 X-ray photoelectron spectroscopy (XPS) 10-3-3 形態學分析 10-3-3 二氧化鈦包覆碳奈米管/聚倍半矽氧烷/環氧樹脂奈米複合 材料之機械性質 10-3-4 二氧化鈦包覆碳奈米管/聚倍半矽氧烷/環氧樹脂奈米複合 材料之體積電阻 10-4 結論 10-5 參考文獻 第十一章 矽醇改質碳奈米管/聚甲基丙烯酸甲酯奈米複合材料 11-1 前言 11-2實驗部份 11-2-1實驗材料 11-2-2實驗步驟 11-3結果與討論 11-3-1傅立葉轉換紅外線光譜 (Fourier transform infrared spectroscopy, FT-IR) 11-3-2多壁碳奈米管/PMMA-VTES奈米複合材料29Si固態核磁共振分析(29Si solid state nuclear magnetic resonance, NMR))結果 11-3-3多壁碳奈米管/PMMA-VTES奈米複合材料形態分析 11-3-4多壁碳奈米管/PMMA-VTES奈米複合材料之表面及體積電阻 11-3-5多壁碳奈米管/PMMA-VTES奈米複合材料之熱傳導係數 11-3-6多壁碳奈米管/PMMA-VTES奈米複合材料之熱穩定性分析 11-4 結論 11-5參考文獻 第十二章 總結論 12-1結論 本論文之研究成果已發表之相關著作 國外期□論文 國內期□論文 國際研討會論文 國內研討會論文 本研究成果已申請專利 個人簡歷 Scheme 5 1 Acid modification of MWCNT Scheme 5 2 Amine modification (grafting) of MWCNT (R=CH2CH2NH2) Scheme 5 3 Polyimide grafted on the acid modified MWCNs Scheme 5 4 Preparation of polyimide Scheme 6 1 Perparation of silane grafted carbon nanotubes/polyimide composites Scheme 6 2 IPTES grafted of MWCNT Scheme 6 3 Attachment of APTES with acid modified MWCNT Scheme 6 4 Modification of MWCNT by VTES Scheme 8 1 Modification of MWCNT by IPTES Scheme 8 2 Modification of DGEBA-type Epoxy by IPTES Scheme 8 3 Preparation of Si-MWCNT/Epoxy composites Scheme 11 1 Modification of MWCNT by IPTES Scheme 11 2 Synthesis of PMMA-VTES copolymer Scheme 11 3 Preparation of Si-MWCNT/ PMMA-VTES nanocomposites Figure 2–1碳系材料結構圖 Figure 2–2碳奈米管結構 Figure 2–3 單壁碳奈米管管束的示意圖及高解析度電子顯微鏡的 觀察結果 Figure 2–4多壁碳奈米管可能的結構:左.同心圓柱結構 中.同心多 邊形右.蛋卷結構 Figure 2–5 bamboo 型碳奈米管形成示意圖 Figure 2–6 TEM pictures of bamboo-like carbon nanotube Figure 2–7電弧法生成碳奈米管裝置示意圖 Figure 2–8電弧法生成碳奈米管裝置示意圖 Figure 2–9 電弧法連續合成碳奈米管裝置示意圖 Figure 2–10 CSIRO所發展之碳奈米管整齊排列生長裝置簡圖 Figure 2–11 TEM及SEM裝置示意 Figure 2–12 HRTEM, 1: Electronen cannon in the upper part of the column. 2 Electro-magnetic lenses to direct and focus the electron beam inside the column. 3: Vacuum pumps system. 4: Opening to insert a grid with samples into the high-vacuum chamber for observation. 5: Operation panels (left for alignment; right for magnification and focussing; arrows for positioning the object inside the chamber). 6: Screen for menu and image display. 7: Water supply to cool the instrument. Figure 2–13 TPD比較圖譜。a為SWNT,b為活性碳 Figure 2–14以混酸(氧化法)改質碳奈米管 Figure 2–15 醯氯化改質碳奈米管 Figure 2–16異氰酸化法改質碳奈米管27 Figure 2–17 磺化法改質碳奈米管 Figure 2–18胺化法改質碳奈米管 Figure 2–19不同氣氛下單壁碳奈米管的電導性(a)氧氣保護下在200ppm NO2時單根半導體型單壁碳奈米管的感應電導; (b)氬氣保護下含l%NH3時單根單壁碳奈米管的感應電導 Figure 2–20填充在單璧奈米碳管中金屬Ru的高分辯電子顯微鏡 照片 Figure 2–21填充在多壁碳奈米管中氧化杉的高分辨電子顯微鏡 照片 Figure 2–22填充有銀顆粒的碳奈米管的高分辨像 Figure 2–23燃料電池反應示意圖 Figure 3–1 製備Epoxy/CNT用來黏接兩個graphite fiber/epoxy複合 材料示意圖 Figure 3–2 摻混1wt%及5wt% MWCNT之epoxy的拉伸測試 Figure 3–3 Epoxy/CNT摻混block copolymer(CCOE)、沒摻混block copolymer(CE)、僅block copolymer /epoxy(COE)及純 epoxy(ER)的拉伸測試結果 Figure 3–4 Copolymer在溶液中具有分散CNT的功能 Figure 3–5 Stress/strain responses of MWCNTs/epoxy composites. (a) 3 wt.% type I, (b) 6 wt.% type I, (c) 3 wt.% type II and (d) 6 wt.% type II. Figure 3–6不同程度CNT添加量之動態流變分析的結果 Figure 3–7 Epoxy的直流導電度隨CNT之添加的變化情形 Figure 3–8 FSWCNT/Epoxy的 (a)儲存模數 (b)損失因子 Figure 3–9 Transmission optical micrographs of epoxy composites containing 0.01 wt% multi-wall carbon nanotubes during curing at 80℃in a DC field of 100 V/cm. The bottom image shows the resulting nanotube network structure in a fully processed bulk composite cured under these conditions Figure 3–10 Transmission optical micrographs of epoxy composites containing 0.01 wt% multi-wall carbon nanotubes during curing at 80 8C in an AC field of 100 V/cm. The bottom image shows the resulting nanotube network Figure 3–11Typical tensile stress–strain curves of carbon nanotube composites and the relative matrices. (a) and (b) Samples with the soft matrices (with 9 wt% hardener and 48 h curing time for (a) and 72 h for (b)), carbon nanotubes show a significant reinforcement role and the fracture strain of nanocomposites shows no evident decrease. (c) and (d) Samples with the stiffer matrices (with 12 wt% and 13 wt% for (c) and (d), respectively, and 48 h curing time), carbon nanotubes play a slight reinforcement role. Figure 3–12 Raman spectra of the raw SWNT, purified by H2O2 reflux and with the two-step reflux process. Figure 3–13 Impedance spectroscopy plots of the composite samples containing different types of nanotubes: (a) MWCNTs; (b) chemically treated SWNTs; (c) ball-milled SWNTs; (d) electrical conductivity at 1 Hz of the composite materials as a function of nanotube content Figure 3–14 Thermal conductivity of composite materials as a function of nanotube concentration. The dashed line represents the conductivity of pure epoxy Figure 3–15 Nanocomposite structure development after processing at different gap settings (a) 50μm, (b) 20μm , (c) 10μm and (d) 5μm Figure 3–16Carboxylation reaction of carbon nanotube under UV/O3 treatment Figure 3–17 Chemical reaction between amino-functionalized MWCNTs and epoxy Figure 3–18 XRD樣品 (a)純PI (b)~(d) 5、9、12wt%碳管含量的PI-MWCNT (e)純多壁碳管 Figure 3–19 PI-MWCNT在不同碳管含量的拉伸及抗張強度的變化 Figure 3–20 PI-MWCNT在不同碳管含量下,導電性的變化(10 kHz) Figure 3–21 PI-MWCNT在不同碳管含量下,介電常數的變化 (10 kHz) Figure 3–22 製備聚亞醯胺及碳奈米管複合材料薄膜之流程 Figure 3–23 PAA-MWCNT薄膜之DSC曲線 Figure 3–24左圖為PI-MWCNT在MWCNT-Ι之含量1.14vol% SEM圖;右圖為PI-MWCNT在MWCNT- □ 之含量1.14vol%SEM圖 Figure 3–25 PI-MWCNT在不同碳管含量下,Young’s modulus曲線 Figure 3–26 純PI和PI-MWCNT碳管含量1.14和3.71vol%之三種 比例在溫度控制從 -150℃~300℃下,所得之儲存模數 和消失模數 Figure 3–27 室溫下測試PI-MWCNT在不同碳管含量下之電阻曲線 Figure 3–28 EP膜片以光學顯微鏡觀測所得之圖 Figure 3–29 P膜片以光學顯微鏡觀測所得之圖 Figure 3–30 EP膜片以HRSEM觀測所得之圖 Figure 3–31 P薄膜以HRSEM觀測所得之圖 Figure 3–32 Structure of R-BAPB polyimide Figure 3–33 G’ and (b) (a) PMMA/purified MWCNTs and (b) PMMA/ m-MWCNTs composites versus and G” of (c) PMMA/ purified MWCNTs and (d) PMMA/m-MWCNTs composites versus at frequency at 200 ℃ with various nanotube loading Figure 3–34 The structures of various silane compounds Figure 3–35 The scheme of a MWCNT/PMMA based gas sensor Figure 3–36 Field-emission SEM images of PU–SWCNT composite: (a, c) fracture plane parallel to pressure direction (symbolized with Y in stress model) and (b, d) fracture plane perpendicular to pressure direction (symbolized with X in stress model) Figure 3–37 Synthesis of Nylon 6-SWNT Composite by Ring-Opening Polymerization of Caprolactam in the Presence of SWNTs Figure 3–38 Suggested Covalent Bonding of Polyethylene to F-SWNTs during Shear Mixing Processing Figure 3–39 A comparison of complex and steady shear viscosities Figure 3–40 TEM micrographs of cryo-microtomed nanocomposites for different MWCNT loadings, m: (a) 0.5 wt% and (b) 4.8 wt%. The scale bar is 250 nm Figure 3–41 SEM micrographs of CNTs/PET composites. Concentration of CNTs: (a) 0.5 wt%, (b) 2 wt%, (c) 4 wt% and (d) 10 wt% 131 Figure 3–42 η*of (a) PET/MWCNT nanocomposites with different MWCNT contents at 270℃ and (b) PET/MWCNT 2.0 nanocomposites at different temperatures as a function of frequency (ω) Figure 3–43 Effect of MWCNTs on (a) G’ and (b) G” of PET/MWCNT nanocomposites at 270℃ as a function of frequency(ω) Figure 3–44 Schematic diagram of electrospinning apparatus Figure 3–45 MWCNT接枝poly(acrylic acid) Figure 3–46TEM images of the pristine MWCNTs (a), HOEt-MWCNTs (b), MWCNT-g-PAA (c), and the HRTEM image of MWCNT-g-PAA (d). The inset photographs show the stability in water (after sonication for 30 min) of HOEt-MWCNTs (t ) 0) (A), MWCNT-g-PAA (t ) 0) (B), HOEt-MWCNTs (t ) 2 days) (C), and MWCNT-g-PAA (t ) 30 days) (D). The concentration of either the HOEt-MWCNTs or the MWCNT-g- PAA in the bottles is 3 mg/mL Figure 3–47 Schematic showing the change in nanotube microstructure that occurs as the pH of poly(acrylic acid) is changed. At low pH, the polymer is uncharged and highly coiled with extensive intrachain hydrogen bonding. At high pH, the carboxylic acid groups are deprotonated and the polymer is more extended as the negatively charged side groups repel one another Figure 3–48 Schematic diagram of preparation of sandwich-like SWNT/PEEK composites Figure 3–49 Fabrication procedure of MWCNT/poly(furfuryl) nanocomposites Figure 4–1 Setup of the thermal conductivity measurement Figure 5–1 FTIR spectra of (a) unmodified MWCNT, (b) acid modified MWCNT, (c) amine-modified MWCNT, (d) PI-g-MWCNT Figure 5–2 (a) 1H NMR of polyimide grafted MWCNT, (b) Chemical structure of polyimide grafted MWCNT Figure 5–3 SEM microphotographs of the MWCNT , (a) unmodified MWCNT (50,000x),(b) acid modified MWCNT (50,000x) (c) amine modified MWCNT (50,000x) Figure 5–4TEM microphotographs of (a)acid modified MWCNT(x100,000), and (b) polyimide grafted MWCNT (x40,000) Figure 5–5 SEM microphotographs of (a,b)neat polyimide (a.x50000 ; b.x10000) (c,d) Unmodified MWCNT composites polyimide (c.x50000 ; d.x10000) (e,f) acid modified MWCNT composites polyimide (e.x50000 ; f.x10000) (g,h) amine modified MWCNT composites polyimide (g.x50000 ; h.x10000) Figure 5–6 SEM microphotographs of 5.0 phr polyimide grafted MWCNT/Polyimide composites (a)x1,000, (b)x10,000 (c)x50,000 Figure 5–7TEM microphotographs of 6.98wt% of (a,b) Unmodified MWCNT/polyimide composites (a.x10,000, b.x50,000); (c,d)acid modified MWCNT/ composites polyimide (c.x10,000, d.x50,000);(e,f)amine modified CNT composites polyimide (e.x50,000, f.x100,000) (g,h) acid modified MWCNT/ composites polyimide (g.x10,000, h.x50,000) Figure 5–8 Effect of CNT content on the electrical resistivity of the MWCNT/polyimide nanocomposite (a)surface resistivity (b)volume resistivity Figure 5–9 Effect of CNT content on the tensile properties in the MWCNT/polyimide Figure 6–1 FTIR spectra of (a) isocyanatopropyltriethoxysilane(IPTES) modified MWCNT (b) (3-Aminopropyl)triethoxysilane (APTES) modified MWCNT (c) Vinyltriethoxysilane (VTES) modified MWCNT Figure 6–2 Raman spectra of (a) unmodified MWCNT (b) VTES-MWCNT-1 (c) VTES-MWCNT-2 (d) VTES-MWCNT-3 Figure 6–3 X-ray photoelectron spectroscopy(XPS) spectra of (a,b)IPTES-MWCNT-1,(c,d) IPTES-MWCNT-2 and (e,f) IPTES-MWCNT-3 Figure 6–4 X-ray photoelectron spectroscopy(XPS) spectra of (a,b) APTES-MWCNT-1, (c,d) APTES-MWCNT-2 and (e,f) APTES-MWCNT-3 Figure 6–5 X-ray photoelectron spectroscopy (XPS) spectra of (a,b) Unmodified MWCNT, (c,d) VTES-MWCNT-1, (e,f) VTES-MWCNT-2 and (g,h) VTES-MWCNT-3 Figure 6–6 Structure of (a) tri-substituted siloxane bonds (T shift) and (b) tetra-substituted siloxane bonds (Q shift) Figure 6–7 29Si solid-state NMR spectra of cured IPTES-MWCNT/Poly- imide composites with various IPTES-MWCNT ratios and contents: IPTES:MWCNT (wt%) (a) 1:1 (1.0wt%) (b) 1:1 (7.5wt%) (c) 2:1 (1.0wt%) (d) 2:1 (7.5wt%) (e) 3:1 (1.0wt%) (f) 3:1 (7.5wt%) Figure 6–8 29Si solid-state NMR spectra of cured APTES-MWCNT/Polyimide composites Figure 6–9 29Si solid-state NMR spectra of cured PVTES-MWCNT /Polyimide composites with PVTES-MWCNT content: (a) PVTES-MWCNT-1 (0.99wt%) (b) PVTES-MWCNT-1 (6.98wt%) (c) PVTES-MWCNT=2 (0.99wt%) (d) PVTES- MWCNT-2 (6.98wt%) (e) PVTES-MWCNT-3 (0.99wt%) (f)PVTES-MWCNT-3(6.98wt%) Figure 6–10 SEM microphotographs of IPTES-MWCNT/Polyimide composites with IPTES:MWCNT (a) 1:1(x1000), (b) 1:1 (x50000) (c) 2:1(x1000), (d)2:1(x50000) (e)3:1(x1000), (f)3:1(x50000) Figure 6–11 TEM microphotographs of IPTES-MWCNT/Polyimide composites with IPTES:MWCNT (a) 1:1(x10,000), (b) 1:1(x50,000) (c)2:1(x10,000), (d)2:1(x50,000) (e) 3:1 (x10,000), (f)3:1(x50,000) Figure 6–12 SEM microphotographs of APTES-MWCNT/Polyimide composites: (a) APTES-MWCNT-1 (x1000), (b) APTES- MWCNT-1 (x50000) (c) APTES-MWCNT-2 (x1000), (d) APTES-MWCNT-2 (x50000) (e) APTES-MWCNT- 3(x1000), (f) APTES-MWCNT-3(x50000) Figure 6–13 TEM microphotographs of APTES-MWCNT/Polyimide composites APTES-MWCNT-1 (a) x10,000, (b) x50,000 APTES-MWCNT-2 (c)x10,000, (d) x50,000 APTES- MWCNT-3 (e)x10,000, (f) x50,000 Figure 6–14 SEM microphotographs of PVTES-MWCNT/Polyimide composites (a)PVTES-MWCNT-1(1000x), (b) PVTES- MWCNT-1(50000x) (c)PVTES-MWCNT-2 (1000x), (d)PVTES-MWCNT-2(50000x) (e)PVTES- MWCNT- 3(1000x), (f) PVTES-MWCNT-3(50000x) Figure 6–15 TEM microphotographs of PVTES-MWCNT/Polyimide composites (a)PVTES-MWCNT-1(x10,000), (b) PVTES- MWCNT-1(x50,000) (c)PVTES-MWCNT-2(x10,000), (d) PVTES-MWCNT-2(x50,000) (e)PVTES-MWCNT-3 (x10,000), (f) PVTES-MWCNT-3(x50,000) Figure 6–16 Effect of MWCNT content on volume resistance of the MWCNT/polyimide composite :(a) IPTES-MWCNT/ Polyimide, (b) APTES-MWCNT/Polyimide, (c) VTES- MWCNT/Polyimide Figure 6–17 Effect of MWCNT content on Absolute derivative of the MWCNT /polyimide composite (a) IPTES-MWCNT/ Polyimide, (b) APTES-MWCNT/Polyimide (c) VTES- MWCNT/Polyimide Figure 6–18 Effect of MWCNT content on the tensile stress in the MWCNT/polyimide composite (a) IPTES-MWCNT, (b)APTES-MWCNT, (c) VTES-MWCNT Figure 6–19 Effect of MWCNT content on the Young’s modulus stress in the MWCNT/polyimide composite (a) IPTES-MWCNT, (b) APTES-MWCNT, (c) VTES-MWCNT Figure 7–1 Setup of the thermal conductivity measurement Figure 7–2 SEM microphotograph of the 1wt% MWCNT/Epoxy nanocomposite, (a). x30,000 and (b)x45,000 Figure 7–3 Effect of CNT content on the (a) glass transition temperature (Tg) (b) thermal expansion coefficient of the MWCNT/Epoxy nanocomposites Figure 7–4 Effect of MWCNT content on the normalized thermal conductivity of the MWCNT/Epoxy nanocomposites(km is thermal conductivity of nanocomposites and k0 is thermal conductivity of neat epoxy) Figure 7–5 Effect of CNT content on (a) surface resistivity and (b)bulk resistivity Figure 7–6 Effect of MWCNT content on dielectric constant, (a) ε’ (real part) of the MWCNT/Epoxy nanocomposites and (b) ε” (imaginary parts) of the MWCNT/Epoxy nanocomposites Figure 8–1 FT-IR spectra of (a) acid modified MWCNT; (b)isocyanatopropyltriethoxysilane modified MWCNT Figure 8–2 FT-IR spectra of the reaction between epoxy resin and isocyanatopropyltriethoxysilane Figure 8–3 X-ray photoelectron spectroscopy(XPS) spectra of (a,b)Unmodified MWCNT, (c,d) acid modified MWCNT and (e,f) IPTES modified MWCNT Figure 8–4 The solid-state 29Si NMR spectra of (a) Epoxy composities. (b) 1.0phr Silane modified MWCNT/Epoxy (c) tri-substituted siloxane bonds (T shift) Figure 8–5 (a) The solid-state 13C NMR CP/MAS spectra of silane modified MWCNT/Epoxy (numbers are correlated to Figure 8-5(b)) (b)Chemical structure of cured silane modified Epoxy Figure 8–6 DSC data of the Silane modified MWCNT/Epoxy compo- sites. (a) DSC curve of Silane modified MWCNT/Epoxy composites (b) Derivative of DSC curve of the Silane modi- fied MWCNT/Epoxy composites Figure 8–7 DMA analysis of the MWCNT/Epoxy composites (a)storage modulus (b) tan delta Figure 8–8 SEM microphotographs of the 1.0phr MWCNT/Epoxy composites (a) x5,000 (b) x 50,000 Figure 8–9 SEM microphotographs of the 1.0phr MWCNT/Epoxy composites Figure 8–10 Effect of MWCNT content on the (a)Tensile strength, (b) Young’s modulus of silane modified MWCNT/Epoxy nanocomposite Figure 8–11 Effect of MWCNT content on the (a) Flexural strength, (b) Flexural modulus of silane modified MWCNT/Epoxy nanocomposite Figure 8–12 Effect of MWCNT content on the (a)surface electrical resistivity Figure 9–1 MWCNT coated with TiO2 and modification with (3-aminopropyl)- triethoxysilane Figure 9–2 X-ray photoelectron spectroscopy(XPS) spectra of (a,b) Unmodified MWCNT, (c,d) TiO2 coated MWCNT and (e,f) APTES modified TiO2 coated MWCNT Figure 9–3 TEM microphotographs of the (a) TiO2 coated MWCNT (b) 0.99wt% unmodified MWCNT/Epoxy composites (c) 0.99wt% of AT-MWCNT/Epoxy composites Figure 9–4 SEM microphotographs of 0.99wt% (a)unmodified MWCNT/Epoxy composites (b)AT-MWCNT/Epoxy composites Figure 9–5 Effect of CNT content on (a)Tensile strength, (b)Young’s Modulus of the MWCNT/Epoxy composite Figure 9–6 Effect of CNT content on (a) Flexure strength and (b) Flexure Modulus of the MWCNT/Epoxy composite Figure 9–7 Effect of MWCNT content on volume electricity resistivity of the MWCNT/Epoxy composite Figure 10–1 XRD of the MWCNTs Figure 10–2 X-ray photoelectron spectroscopy(XPS) spectra of (a,b) Unmodified MWCNT, (c,d) T-30, (e,f) T-300 and (g,h) T-3000 Figure 10–3 TEM microphotographs (x 25,000) of (a) T-30, (b), T-300, (c) T-3000 Figure 10–4 TEM microphotographs (x 25,000) of 0.99wt% of (a)unmodified MWCNT/PSSQ/Epoxy, (b), T-30/PSSQ/Epoxy, (c) T-300/PSSQ/Epoxy and (d) T-3000/PSSQ/Epoxy Figure 10–5 Effect of MWCNT content on mechanical properties of the MWCNT/PSSQ/Epoxy composites (a) Tensile strength, (b) Young’s Modulus, (c) Flexure strength and (d) Flexure Modulus Figure 10–6 Effect of MWCNT content on volume electricity resistivity of the TiO2 coated MWCNT/PSSQ/Epoxy composite Figure 11–1 FT-IR spectra of (a) acid modified MWCNT (b)isocyanatopropyltriethoxysilane modified MWCNT Figure 11–2 29Si solid-state NMR spectra of cured PMMA-VTES composites with Si-MWCNT content (a) 0 (b)0.5 (c)0.99 (d)1.96 (e)2.91 and (f)3.85 wt% Figure 11–3 Structure of (a) tri-substituted siloxane bonds (T shift) and (b) tetra-substituted siloxane bonds (Q shift) Figure 11–4 SEM microphotographs of the 3.85wt% MWCNT/PMMA-VTES nanocomposite, (a). x10,000 and (b) x50,000 Figure 11–5 TEM microphotographs of the 3.85wt% MWCNT/PMMA-VTES nanocomposite, (a). x40,000 and (b)x100,000 Figure 11–6 Effect of CNT content on the (a) surface resistivity (b) volume resistivity of Si-MWCNT/PMMA- VTES nano- composites Figure 11–7 Effect of MWCNT content on the thermal conductivity of Figure 11–8 TGA curves of Si-MWCNT/PMMA-VTES composite Table 2 1碳奈米管的物理性質 Table 2 2單壁及多壁碳奈米管之性質比較 Table 3 1各類改質碳管所用的溶劑與編號 Table 3 2 Specification of nanoparticles applied in the studies Table 3 3 Mechanical properties of pure epoxy and CNT/epoxy composites Table 3 4 EP-SWNT薄膜在常溫下的性質比較 Table 3 5 P-SWNT薄膜在常溫下的性質比較 Table 3 6 EP-SWNT薄膜電阻抗值 Table 3 7 P-SWNT薄膜電阻抗值 Table 3 8 Slopes of G’ versus frequency and of G” versus frequency for PMMA/ MWCNTs composites Table 3 9 Mechanical Properties of Nylon and Nylon 6-SWNT Composite Fibers Table 3 10 Mechanical Properties of the SWNT/PE Composites and Pure PE Table 3 11 DSC Results for the PET/MWCNT Nanocomposites with respect to the MWCNT Content Table 3 12 Thermal Stability of the PET/MWCNT Nanocomposites as a Function of the MWCNT Content Table 5 1 Glass transition temperature (Tg) of the MWCNT/polyimide Nanocomposite Table 5 2 Properties of the MWCNTs/polyimide composites Table 6 1 The ratios of IPTES to acid modified MWCNT for IPTES modified MWCNT Table 6 2 The ratios of APTES to acid modified MWCNT for APTES- MWCNT Table 6 3 The ratios of VTES to unmodified MWCNT for PVTES modified MWCNT Table 6 4 Percentages of T- and Q- substitution of IPTES-MWCNT/polyimide composites Table 6 5 Percentages of T- and Q- substitution of APTES-MWCNT/polyimide composites Table 6 6 Percentages of T- and Q- substitution of PVTES-MWCNT/polyimide composites Table 8 1 T1ρH spin lock relaxation time measured at 300K of correspondingsegmental motions of silane modified MWCNT/Epoxy composites. (Carbon numbers are correlated to Figure 8-5b)) Table 9 1 Atomic percentage determined using the XPS spectra Table 10 1 The condition of TiO2 coated on MWCNT Table 10 2 Properties of the MWCNTs/polyimide composites Table 11 1 Degree of condensation of Tri-substituted distribution Table 11 2 Thermal stability of Si-MWCNT/PMMA-VTES Table 12 1 Properties of the MWCNT/Polymer composites

    第一章參考文獻
    1.S Iijima. Helical microtubes of graphitic carbon. Nature 1991; 56:354.
    2.J Sandler, MSO Shaffer, T Prasse, W Bauhofer, K Schulte, AH. Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999; 40:5967-5971.
    3.S Iijima and M. Endo.The predecessor. Carbon 1995;33(7): 869.
    4.S Subramoney. Novel nanocarbons. Structure, properties, and potential applications. Advanced Materials 1998;10(15):1157-1171.
    5.BI Yakobson and RE Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist 1997; 85:324-30.
    6.RS Lee, HJ Kim, JE Fischer, A Thess, RE Smalley. Conductivity-enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997;388(6639):255-257.
    7.林育中. 菁英論壇-林育中看大勢:碳奈米管. 電子時報2001.
    8.W Tang, MH Santare, SG Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003; 41(14): 2779-2785.
    9.M Subrata. Carbon nano fiber/tube reinforced polypropylene composite: preparation, properties and application. Man-Made Textiles in India 2003;46(9): 329-336.
    10.Z Jia, Z Wang, C Xu, J Liang, B Wei, D Wu, and S Zhu. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 1999;A271(1-2): 395-400.
    11.M Cadek, LB.Foulgoc, JN Coleman, V Barron, J Sandler, MSP Shaffer, A Fonseca, M Es, K. Schulte, and WJ Blau. Structural and Electronic Properties of Molecular Nanostructures, AIP Conference Proceedings 2002;633: 562-565.
    12.Z Lou, Q Chen, W Wang and Y Zhang. Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium. Carbon 2003;41: 3063–3074.
    13.M Motiei, YR Hacohen, J Calderon- Moreno, A Gedanken.Preparing Carbon Nanotubes and Nested Fullerenes from Supercritical CO2 by a Chemical Reaction. Journal of the American Chemical Society 2001; 123: 8624~8625

    第二章參考文獻
    1.羅吉宗, “奈米科技導論,” 全華科技圖書股份有限公司,2003, P4-P6, P67-P70.
    2.E Dujardin, TW Ebbesen, A Krishnan, PN Yianilos, MMJ Treacy. Young's modulus of single-walled nanotubes. Physical Review B 1998;58:14013
    3.MMJ Treacy, TW Ebbesen, JM Gibson. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996;381:678
    4.馬振基主編, 奈米材料科技原理與應用, 全華科技圖書股份有限公司, 2003年12月(台北)
    5.成會明.納米碳管制備,結構,物性及應用, 化學工業出版社 2002年8月(北京)
    6.張朝欽. 在矽基板上以熱裂解法成長奈米碳管的研究 中原大學 應用物理研究所 碩士學位論文 中華民國九十二年七月
    7.M Olek, J Ostrander, S Jurga, H Mo1hwald, N Kotov, K Kempa, and M Giersig. Layer-by-Layer Assembled Compositesfrom Multiwall Carbon Nanotubes with Different Morphologies. Nano letters 2004; 4(10): 1889-1895.
    8.O Satoshi, Y Motoo, K Yasunori, U Kunio, I Fumikazu. Method and device for the production of carbon nanotubes. US Patent, 5482601, 2001
    9.WZ Li, SS Xie, LX Qian, BH Chang, BS Zou, WY Zhou, RA Zhao, G Wang. Large-scale synthesis of aligned carbon nanotubes. Science, 1996;274: 1701
    10.S Huang, L Dai, AWH Mau. Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. Journal of Physical Chemistry B 1999;103:4223-4227.
    11.E Thostenson, Z Ren, TW Chou. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology 2001;61:1899-1912
    12.黃建良, 新世代的材料—碳奈米管, 觸媒與製程 1999; vol. 7 No.3
    13.http://www.ess.nthu.edu.tw/htdocs/b.htm
    14.http://www.vcbio.science.ru.nl/en/fesem/info/principe
    15.http://www.nscric.nthu.edu.tw/EM/hrtem/hrtem.html
    16.High Resolution Transmission Electron Microscopy, http://www.asu.edu/clas/csss/chrem/techniques/HRTEM.html
    17.AC Dillon and KM Jones. Electrical conductivity of individual carbon nanotubes. Nature 1996;382:54
    18.N Zhang. Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Materials and Structures 2002;11: 962-965.
    19.RC Hadson, U.S. Patent 6331262, 2001.
    20.Z Shi, Y Lian , X Zhou , Z Gu , Y Zhang , S Iijima , Q Gong , H Li and SL Zhang. Single-wall carbon nanotube colloids in polar solvents. Chemical Communications-Letchworth 2000;6: 461-462.
    21.M Ree, K Kim, SH Woo, H Chang. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. Journal of Applied Physics 1997;81:698-708
    22.BC Auman, TL Myers and DP Higley. Synthesis and characterization of polyimides based on new fluorinated 3,3'-diaminobiphenyls. Journal of polymer science part a: polymer chemistry 1997;35:2441.
    23.JG Lavin, HV Samuelson. Single-wall carbon nanotube-polymer composites. U.S. Patent 6426134, 2002
    24.T V Sreekumar, T Liu, and S Kumar, LM Ericson, RH Hauge, and RE Smalley. Single-Wall Carbon Nanotube Films. Chemistry of Materials 2003; 15: 175-178
    25.M Sano. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films. Langmuir 2001; 17(17): 5125-5128.
    26.E Darron. Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules 2002; 35(25):9466-9471.
    27.J Chen. Dissolution of Full-Length Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B. 2001;105(13): 2525-2528.
    28.Z Liu. Toward the Chemistry of Carboxylic Single-Walled Carbon Nanotubes by Chemical Force Microscopy. Journal of Physical Chemistry B. 2002; 106(16): 4139-4144.
    29.N Zhang. Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Materials and Structures 2002; 11: P962-965.
    30.AC Dillon, KM Jones, TA Bekkedahl. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997;386:377.
    31.Y Ye, CC Ahn, C Witham, B Fultz, J Liu, AG Rinzler, D Colbert, KA Smith, RE Smalley. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters 1999;74:2307-2309.
    32.YY Fan, B Liao, M Liu. Hydrogen uptake in vapor-grown carbon nanofibers. Carbon 1999; 37:1649.
    33.C Liu, YY Fan, M Liu, HT Cong, HM Cheng, and MS Dresselhaus. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 1999; 286:1127-1129
    34.P Chen, X Wu, J Lin, and KL Tan. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science 1999;285:91-93.
    35.PG Collins, K Bradley, M Ishigami and A Zettl. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science 2000; 287:1801-1804.
    36.J Kong, NR Franklin, C Zhou, MG Chapline, S Peng, K Cho, and H Dai. Nanotube Molecular Wires as Chemical Sensors. Science 2000;287:622-625.
    37.J Kong, M Chapline, HJ Dai. Functionalized carbon nanotubes for molecular hydrogen sensors. Advanced materials 2001;13:1384-1386.
    38.GE Gadd, M Blackford, S Moricca, N Webb, PJ Evans, AM Smith, G Jacobsen, S Leung, A Day and Q Hua. The World's Smallest Gas Cylinders? Science 1997; 277:933-936.
    39.G Stan, M Cole. Low coverage adsorption in cylindrical pores. Surface Science 1998;395:280.
    40.MC Gordillo, JB Casulleras. Quasi-one-dimensional 4He inside carbon nanotubes. Physical review B 2000;61 :878
    41.A Fujiwara, K Ishii and H Suematwu. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters 2001; 336 :205
    42.W Teizer, RB Hallock, E Dujardin, and TW Ebbesen. 4He Desorption from Single Wall Carbon Nanotube Bundles: A One-Dimensional Adsorbate. Physical review letters 1999; 82 :5305
    43.W Teizer, RB Hallock, E Dujardin, and TW Ebbesen. 4He Desorption from Single Wall Carbon Nanotube Bundles: A One-Dimensional Adsorbate. Physical review letters 2000;84 :1844.
    44.A Kuznetsova, J Yates, J Liu, RE Smalley. Physical adsorption of xenon in open single walled carbon nanotubes. Observation of a quasi-one-dimensional confined Xe phase. Journal of Chemical Physics 2000;112:9590-9598
    45.MC Gordillo, JB Casulleras. Zero-Temperature Equation of State of Quasi-One-Dimensional H2. Physical review letters 2000;85:2348–2351.
    46.E Dujardin, TW Ebbesen, H Hiura, K Tanigaki. Capillarity and wetting of carbon nanotubes. Science 1994; 265:1850-1852
    47.U Daniel, S Thomas, B Jean-Marc, C Andre, DH Walter. Capillarity in carbon nanotubes. Science and Technology of Carbon Nanotubes 1999;128-142.
    48.SC Tsang, YK Chen, PJF Harris. A simple chemical method of opening and filling carbon nanotubes. Nature 1994;372:159.
    49.http://www.chem.ox.ac.uk
    50.P Ajayan, T Ebbesen, T Ichihashi. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993;262:522.
    51.J Sloan , J Hammer , M Zwiefka-Sibley and MLH Green. The opening and filling of single walled carbon nanotubes (SWTs). Chemical Communications 1998; 347
    52. J Sloan, RE Dunin-Borkowski, JL Hutchison. The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chemical Physics Letters 2000;316:191
    53.SC Tsang, JJ Davis, MLH Green, HAO Hill, YC Leung, PJ Sadler. Immobilization of Small Proteins in Carbon Nanotubes: High-Resolution Transmission Electron Microscopy Study and Catalytic Activity. Journal of the Chemical Society D: Chemical Communications 1995; 1803-1804.
    54.SC Tsang, JJ Davis, MLH Green, HAO Hill, YC Leung, PJ Sadler. Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity. Journal of the Chemical Society D: Chemical Communications 1995;2579.
    55.MLH Green. Seminar of Chemistry of Fullerene and Carbon nanotube-21th ACS meeting. San Diego:2001.1
    56.PM Ajayan, O Stephan, P Redlich, C Colliex. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 1995; 375: 564 – 567
    57.W Han, S Fan, Q Li, and Y Hu. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction. Science. 1997; 277:1287-1289.
    58.楊全紅, 劉敏, 成會明等, 材料研究學報. 2001, 15(4):1
    59.D Ugarte, A Chatelain, WA de Heer. Nanocapillarity and Chemistry in Carbon Nanotubes. Science. 1996;274:1897-1899
    60.J Sloan, DM Wright, HG Woo, S Bailey, G Brown, APE York, KS Coleman, JL Hutchison and MLH Green. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chemical Communications 1999: 699.
    61.P Ajayan and S Iijima. Capillarity-induced filling of carbon nanotubes. Nature. 1993;361:333-334
    62.D Ugarte, T St□ckli, JM Bonard, A Ch□telain, WA de Heer. Filling carbon nanotubes. Applied Physics A 1998;67:101
    63.PJ Britto, KSV Santhanam, A Rubio, JA Alonso, PM Ajayan. Improved Charge Transfer at Carbon Nanotube Electrodes. Advanced materials 1999;11:154.
    64.http://vr.theatre.ntu.edu.tw/battery/database/types/fuel.htm#basic
    65.http://she.moeaidb.gov.tw/issue5/tec5_4.htm
    66.AB Dalton, C Stephan, JN Coleman, B McCarthy, PM Ajayan, S Lefrant, P Bernier, W J Boul, HJ Byrne. Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes. Journal of Physical Chemistry B. 2000;104(43):10012-10016.
    67.MJO Connell, P Boul, LM Ericson, C Huffman, YH Wang, E Haroz, C Kuper, J Tour, KD Ausman, RE Smalley. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001;342: 265.
    68.A Star, DW Steuerman, JR Heath, JF Stoddart. Starched carbon nanotubes. Angewandte Chemie, International Edition 2002; 41(14):2508-2512.
    69.Z Tang, H Xu. Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes. Macromolecule 1999;32: 2569.
    70.MSP Shaffer, K Koziol. Polystyrene grafted multi-walled carbon nanotubes. Chemical Communications-Letchworth 2002;18:2074.
    第三章參考文獻
    1. JH Du, ZY, S Bai, F Li, C Sun and HM Cheng. Microstructure and Resistivity of Carbon Nanotube and Nanofiber/Epoxy Matrix Nanocomposite. International Journal of Nanoscience 2002; 1(5,6) :719~723.
    2. A Allaoui, S Bai, HM Cheng, JB Bai. Mechanical and electrical properties of a MWCNT/epoxy composite. Composites Science and Technology 2002;62:1993~1998.
    3. A Eitan, K Jiang, D Dukes, R Andrews and LS Schadler. Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites. Chemistry of Materials 2003;15:3198~3201.
    4. ES Choi, JS Brooks, DL Eaton, MS Al-Haik, MY Hussaini, H Garmestani, D Li and K Dahmen. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics 2003; 94(9) :1
    5. J Jang, J Bae and SH Yoon. A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. Journal of Materials Chemistry 2003;13:676-681
    6. FH Gojny, J Nastalczyk, Z Roslaniec, K Schulte. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters 2003;370:820~824.
    7. J Zhu, JD Kim, H Peng, JL Margrave, VN Khabashesku, and EV Barrera. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Letters 2003; 3 (8): 1107~1113.
    8. JKW Sandler, JE Kirk, IA Kinloch, MSP Shaffer, AH Windle. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003;44: 5893-5899.
    9. KT Hsiao, J Alms, and SG Advani. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 2003;14:791.
    10. L Valentini, D Puglia, E Frulloni, I Armentano, JM Kenny, S Santucci. Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Composite Science and Technology 2003;64: 23~33.
    11. Q Li, M Zaiser and V Koutsos. Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Physica status solidi a 2004; 201 : R89
    12. Y Breton, GD Esarmot, JP Salvetat, S Delpeux, C Sinturel, F Beguin, S Bonnamy. Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 2004;42: 1027–1030.
    13. Y Ren, YQ Fu and K Liao, F Li and HM Cheng. Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy. Applied physics letters 2004; 84(15): 2811,2004
    14. YS Song and JR Youn. Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation. Korea-Australia Rheology Journal 2004; 16 : 201.
    15. S Barrau, P Demont, C Maraval, A Bernes and C Lacabanne. Glass Transition Temperature Depression at the Percolation Threshold in Carbon nanotube-Epoxy Resin and Polypyrrole-Epoxy Resin Composites. Macromolecular rapid communications 2005;26 : 390
    16. YJ Kim, TS Shin, HD Choi, JH Kwon, YC Chung, HG Yoon. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 2005;43: 23–30
    17. H Miyagawa, AK Mohanty, LT Drzal and M Misra. Nanocomposites from biobased epoxy and single-wall carbon nanotubes: synthesis and mechanical and thermophysical properties evaluation. Nanotechnology 2005; 16 : 118.
    18. J Suhr, N Koratkar, P Keblinski and P Ajayan. Viscoelasticity in carbon nanotube composites. Nature materials 2005; 4:134-137.
    19. H Miyagawa, MJ Rich, LT Drzal. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers. Thermochimica Acta 2006;442:67–73
    20. CA Martin, JKW Sandler, AH Windle, MK Schwarz, W Bauhofer, K Schulte, MSP Shaffer. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 2005;46 :877–886
    21. L Ci, JB Bai. The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness Composites Science and Technology 2006;66 : 599–603
    22. RG de Villoria, A Miravete, J Cuartero, A Chiminelli, N Tolosana. Mechanical properties of SWNT/epoxy composites using two different curing cycles. Composites: Part B 2006;37:273–277
    23. FH Gojny, MHG Wichmann, B Fiedler, IA Kinloch, W Bauhofer, AH Windle, K Schulte. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006;47:2036–2045
    24. A Moisala, Q Li, IA Kinloch, AH Windle. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites.Composites Science and Technology 2006;66:1285–1288.
    25. JA Kim, DG Seong, TJ Kang, JR Youn. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 2006;44:1898–1905
    26. ET Thostenson, TW Chou. Processing-structure- multi-functional property relationship in carbon nanotube/epoxy composites Carbon 2006;44 :3022–3029
    27. N Li, YHuang, X He, H Gao, Y Ma, F Li, Y Chen and PC Eklund. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano letters 2006;6(6): 1141-1145
    28. KT Lau, M Lu, K Liao. Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. Composites: Part A 2006;37:1837–1840
    29. J Wang, Z Fang, A Gu, L Xu, F Liu. Effect of Amino-Functionalization of Multi-walled Carbon Nanotubes on the Dispersion with Epoxy Resin Matrix. Journal of Applied Polymer Science, 2006; 100: 97–104.
    30. GS Zhuang, GX Sui, ZS Sun, R Yang. Pseudoreinforcement Effect of Multiwalled Carbon Nanotubes in Epoxy Matrix Composites. Journal of Applied Polymer Science 2006; 102:3664–3672.
    31. ML Sham, JK Kim. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon 2006;44:768–777
    32. H Chen, O Jacobs, W Wu, G Rudiger, B Schadel. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polymer Testing (2007), doi:10.1016/j.polymertesting.2006.11.004
    33. J Shen, W Huang, L Wu, Y Hu, M Ye. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes Composites: Part A 2007;38:1331–1336
    34. J Cho and IM Daniel. Reinforcement of carbon/epoxy composites with multi-wall carbon nanotubes and dispersion enhancing block copolymers. Scripta Materialia 2008;58: 533–536
    35. L Sun, GL Warren, JY OReilly, WN Everett, SM Lee,D Davis, D Lagoudas, HJ Sue. Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 2008; 4 6:3 2 0 –3 2 8
    36. BK Zhu, SH Xie, ZK Xu, YY Xu. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Composites Science & Technology 2006;66:548-554
    37. X Jiang, Y Bin, M Matsuo. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005;46 :7418–7424
    38. DM Delozier, KA Watson, JG Smith, TC Clancy and JW Connell. Investigation of Aromatic/Aliphatic Polyimides as dispersants for Single Wall Carbon Nanotubes. Macromolecules 2006;39:1731-1739
    39. VE Yudin, AY Feldman, VM Svetlichnyi, AN Shumakov, G Marom. Crystallization of R-BAPB type polyimide modified by carbon nano-particles. Composites Science and Technology 2007;67:789–794
    40. T Liu, Y Tong, WD Zhang. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Composites Science and Technology 2007;67:406–412
    41. WJ Chou, CC Wang, CY Chen. Thermal behaviors of polyimide with plasma-modified carbon nanotubes. Polymer Degradation and Stability 2008;93:745-752
    42. Z Jin, KP Pramoda, SH Goh, G Xu. Poly(vinylidene fluoride)-assited melt-blending of multi-walled carbon mamotube/poly(methyl methacrylate) composite. Materials Reasearch Bulletin 2002;37:271
    43. SJ Park, MS Cho, ST Lim, HJ Choi, MS Jhon, Synthesis and Dispersion Characteristics of Multi-Walled Carbon Nanotube Composites with Poly(methyl methacrylate) Prepared by In-Situ Bulk Polymerization. Macromolecular rapid communications 2003; 24:1070
    44. F Du, JE Fischer, KI Winey, Coagulation Method for Preparing Single-Walled Carbon Nanotube/Poly(methyl methacrylate) Composites and Their Modulus, Electrical Conductivity, and Thermal Stability. Journal of Polymer Science: Part B: Polymer Physics, 2003;41:3333
    45. JH Sung, HS Kim, HJ Jin, HJ Choi, IJ Chin. Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Composites. Macromolecules 2004;37 : 9899
    46. SJ Park, ST Lim, MS Cho, HM Kim, J Joo and HJ Choi. Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite. Current Applied Physics 2005;5:302
    47. Z Yang, B Dong, Y Huang, L Liu, FY Yan, HL Li. A study on carbon nanotubes reinforced poly(methyl methacrylate) nanocomposites Materials Letters 2005;59:2128
    48. J Dai, Q Wang, W Li, Z Wei and G Xu. Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites. Materials Letters 2006; 61: 27–29
    49. Z Zhou, S Wang, L Lu, Y Zhang, Y Zhang. Preparation and rheological characterization of poly(methyl methacrylate)/functionalized multi-walled carbon nanotubes composites. Composites Science and Technology 2007;67:1861-1869
    50. HF Wei, GH Hsiue, CY Liu. Surface modification of multi-walled carbon nanotubes by a sol–gel reaction to increase their compatibility with PMMA resin. Composites Science and Technology 2007;67 :1018–1026
    51. Y Li, HC Wang, MJ Yang. n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sensors and Actuators B 2007;121:496–500
    52. HJ Choi, JY Lim, K. Zhang. Poly(methyl methacrylate)/multi-walled carbon nanotube microbead composites via dispersion polymerization under ultrasonication. Diamond and Related Materials (2008), doi:10.1016/j.diamond.2008.01.037
    53. DO Kim, MH Lee, JH Lee, TW Lee, KJ Kim, YK Lee, T Kim, HR Choi, JC Koo, JD Nam. Transparent flexible conductor of poly(methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube. Organic Electronics 2008;9 :1–13
    54. H Xia, Q Wang, K Li, GH Hu. Preparation of Polypropylene/Carbon Nanotube Composite Powder with a Solid-State Mechanochemical Pulverization Process. Journal of Applied Polymer Science 2004;93:378–386.
    55. MK Seo, JR Lee, SJ Park. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes. Materials Science and Engineering A 2005;404:79–84
    56. S Wang, YZ. Effect of Different Carbon Fillers on the Properties of PP Composites: Comparison of Carbon Black with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science, 2006;102:4823–4830
    57. Z Zhou, S Wang, L Lu, Y Zhang, Y Zhang. Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites Composites Science and Technology doi:10.1016/j.compscitech.2008.02.003
    58. JY Kwon, HD Kim. Preparation and Properties of Acid-Treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites. Journal of Applied Polymer Science. 2005;96:595–604.
    59. HC Kuan, CCM Ma, WP Chang, HH Wu and TM Lee. Synthesis, Thermal, Mechanical and Electrical Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite. Composites Science and Technology. 2005;65(11-12):2383-2391.
    60. CCM Ma, YL Huang, HC Kuan, YS Chiu. Preparation and Electromagnetic Interference Sheilding Characteristics of Novel Carbon-Nanotube/Siloxane/Poly (urea urethane) Nanocomposites. Journal of Polymer Science: Part B: Polymer Physics 2005;43: 345-358.
    61. NG Sahoo, YC Jung, HJ Yoo, JW Cho. Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites. Macromolecular chemistry and physics 2006;207:1773–1780
    62. M Xu, T Zhang, B Gu, J Wu and Q Chen. Synthesis and Properties of Novel Polyurethane-Urea/Multiwalled Carbon Nanotube Composites. Macromolecules 2006;39:3540-3545
    63. J Xiong, D Zhou, Z Zheng, X Yang, X Wang. Fabrication and distribution characteristics of polyurethane/single-walled carbon nanotube composite with anisotropic structure. Polymer 2006;47 :1763–1766
    64. HL Wu, CH Wang, CCM Ma, YC Chiu, MT Chiang, CL Chiang. Preparations and properties of maleic acid and maleic anhydride functionalized multiwall carbon nanotube/poly(urea urethane) nanocomposites. Composites Science and Technology 2007;67:1854–1860
    65. S Mondal, JL Hu. A Novel Approach to Excellent UV Protecting Cotton Fabric with Functionalized MWNT Containing Water Vapor Permeable PU Coating. Journal of Applied Polymer Science, 2007; 103:3370–3376.
    66. Z Kucerova, L Zajckova, V Burskova, V Kudrle, M Elias, O Jasek, P Synek, J Matejkova, J Bursk. Mechanical and microwave absorbing properties of carbon-filled polyurethane. Micron (2008), doi:10.1016/j.micron.2008.03.008
    67. HJ Song, ZZ Zhang, XH Men.Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. European Polymer Journal 2007;43:4092–4102.
    68. J Gao, ME Itkis, A Yu, E Bekyarova, B Zhao and RC Haddon. Continuous Spinning of a Single-Walled Carbon Nanotube-Nylon Composite Fiber. Journal of the American Chemical Society 2005;127:3847-3854
    69. R Haggenmueller, F Du, JE Fischer, KI Winey. Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites. Polymer 2006;47:2381–2388
    70. J Li, L Tong, Z Fang, A Gu, Z Xu. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polymer Degradation and Stability 2006;91:2046-2052
    71. H Meng, GX Sui, PF Fang, R Yang. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 2008;49:610-620
    72. X Tong, C Liu, HM Cheng, H Zhao, F Yang, X Zhang. Surface Modification of Single-Walled Carbon Nanotubes with Polyethylene via In Situ Ziegler–Natta Polymerization. Journal of Applied Polymer Science, 2004;92:3697–3700 .
    73. Y Xue, W Wu, O Jacobs, B Schadel. Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polymer Testing 2006;25:221–229
    74. ML Shofner, VN Khabashesku and EV Barrera. Processing and Mechanical Properties of Fluorinated Single-Wall Carbon Nanotube-Polyethylene Composites. Chemistry of Materials 2006;18:906-913
    75. JH Lee, SK Kim and NH Kim. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scripta Materialia 2006;55:1119–1122.
    76. KQ Xiao, LC Zhang, I Zarudi. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Composites Science and Technology 2007;67:177–182
    77. O Valentino, M Sarno, NG Rainone, MR Nobile, P Ciambelli, HC Neitzert, GP Simon. Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Physica E (2008), doi:10.1016/j.physe.2008.02.001.
    78. HJ Lee, SJ Oh, JY Choi, JW Kim, J Han, LS Tan and JB Baek. In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalized Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET Nanocomposites. Chemistry of Materials 2005;17:5057-5064
    79. G Hu, C Zhao, S Zhang, M Yang, Z Wang. Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 2006;47 :480–488.
    80. Z Li, G Luo, F Wei, Y Huang. Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Composites Science and Technology 2006;66 :1022–1029.
    81. JY Kim, HS Park, SH Kim. Multiwall-Carbon-Nanotube- Reinforced Poly(ethylene terephthalate) Nanocomposites by Melt Compounding. Journal of Applied Polymer Science, 2007;103:1450–1457
    82. G Mathew, JP Honga, JM Rhee, HS Lee, C Nah. Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes. Polymer Testing 2005;24:712–717
    83. SH Jin, KH Yoon, YB Park, DS Bang. Properties of Surface-Modified Multiwalled Carbon Nanotube Filled Poly(ethylene terephthalate) Composite Films. Journal of Applied Polymer Science, 2008;107:1163–1168.
    84. ZM Dang, LZ Fan, Y Shen, CW Nan. Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Materials Science and Engineering B 2003;103:140-144
    85. SI Moon, F Jin, CJ Lee, S Tsutsumi, SH Hyon. Novel Carbon Nanotube/Poly(L-lactic acid) Nanocomposites; Their Modulus, Thermal Stability and Electrical Conductivity. Macromolecular symposia 2005; 224:287-295
    86. GX Chen, HS Kim, BH Park and JS Yoon. Controlled Functionalization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(L-lactic acid). Journal of Physical Chemistry B 2005;109:22237-22243
    87. D Zhang, MA Kandadai, J Cech, S Roth and SA Curran. Poly(L-lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite: Characterization and Biocompatibility Evaluation. Journal of Physical Chemistry B 2006;110:12910-12915
    88. A Eitan, FT Fisher, R Andrews, LC Brinson, LS Schadler. Reinforcement mechanisms in MWCNT-filled polycarbonate. Composites Science and Technology 2006;66 :1159–1170
    89. O Gryshchuk, J Karger-Kocsis, R Thomann, Z Konya, I Kiricsi. Multiwall carbon nanotube modified vinylester and vinylester – based hybrid resins. Composites: Part A 2006;37:1252–1259
    90. S Chen, G Wu, Y Liu and D Long. Preparation of Poly(acrylic acid) Grafted Multiwalled Carbon Nanotubes by a Two-Step Irradiation Technique. Macromolecules 2006;39:330-334
    91. JC Grunlan, L Liu and YS Kim. Tunable Single-Walled Carbon Nanotube Microstructure in the Liquid and Solid States Using Poly(acrylic acid). Nano letters 2006 ;6(5): 911-915
    92. X Li, YD Huang, L Liu, HL Cao. Preparation of Multiwall Carbon Nanotubes/Poly(p-phenylene benzobisoxazole) Nanocomposites and Analysis of Their Physical Properties. Journal of Applied Polymer Science, 2006;102:2500–2508.
    93. CS Wu. Characterizing Composite of Multiwalled Carbon Nanotubes and POE-g-AA Prepared via Melting Method. Journal of Applied Polymer Science 2007; 104:1328–1337
    94. L Song, H Zhang, Z Zhang, S Xie. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites: Part A 2007;38:388–392
    95. X Ma, J Yu, N Wang. Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Composites Science and Technology 2008;68:268–273
    96. XH Men, ZZ Zhang, HJ Song, K Wang, W Jiang. Functionalization of carbon nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings. Composites Science and Technology 2008;68 :1042–1049
    第五章參考文獻
    [1] S Iijima. Helical microtubes of graphitic carbon. Nature 1991;56:354.
    [2] J Sandler, M Shaffer, T Prasse, W Bauhofer, K Schulte and AH Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999;40: 5967-5971.
    [3]H Geng, R Rosen, B Zheng, H Shimoda, L Fleming and JZ Liu. Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes. Advanced materials 2002;14:1387-1390.
    [4]J Han. Exploring carbon nanotubes for nanoscale devices. Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2. (1998).
    [5]F. Beguin. P. Ehrburger. Special issue on carbon nanotubes. Carbon 2002; 40: 1619.
    [6]S Subramoney. Novel nanocarbons. Structure, properties, and potential applications. Advanced Materials 1998 ;10:1157-1173.
    [7]BI Yakobson and RE Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist 1997;85:324-330.
    [8]W Tang, MH Santare and SG Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003; 41(14): 2779-2785.
    [9]S Mondal. Carbon nano fiber/tube reinforced polypropylene composite: preparation, properties and application. Man-Made Textiles in India 2003;46(9): 329-336.
    [10]Z Jia, Z Wang, C Xu, J Liang, B Wei, D Wu and S Zhu. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 1999; A271(1-2): 395-400.
    [11] M Cadek, BL Foulgoc, JN Coleman, V Barron, J Sandler, MSP Shaffer, A Fonseca, M Es, K Schulte and WJ Blau. Structural and Electronic Properties of Molecular Nanostructures, AIP Conference Proceedings 2002;633: 562-565.
    [12] HC Kuan, CCM Ma, WP Chang, SM Yuen, HH Wu and TM Lee. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology 2005;65:1703–1710
    [13]CCM Ma, YL Huang, HC Kuan, YS Chiu. Preparation and Electromagnetic Interference Shielding Characteristics of Novel Carbon- Nanotube/Siloxane/Poly-(urea urethane) Nanocomposites”. Journal of Polymer Science: Part B: Polymer Physics, 2005;43: 345–358.
    [14]D Wilson, HD Stenzenberger, PM Hergenrother. Polyimides. Blackie Glasgow and London, Chapman and Hall, New York, USA (1990)
    [15]EJ Siochi, DC Working, C Park, PT Lillehei, JH Rouse, CC Toppinga, AR Bhattacharyyac, S Kumar. Melt processing of SWCNT-polyimide nanocomposite fibers. Composites: Part B 2004;35:439–446
    [16]JG Smith, DM Delozier, JW Connell and KA Watson. Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymer 2004;45:6133–6142
    [17] KE Wise, C Park, EJ Siochi, JS Harrison. Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions. Chemical Physics Letters 2004;391:207–211
    [18] X Jiang, Y Bin, M Matsuo. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005;46:7418–7424
    [19] DM Delozier, KA Watson, JG Smith and JW Connell. Preparation and characterization of space durable polymer nanocomposite films. Composites Science and Technology 2005;65 :749–755
    [20] DM Delozier, KA Watson, JG Smith and TC Clancy. Connell Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes. Macromolecules 2004;39(5):1731-1739
    [21] A Yu, H Hu, E Bekyarova, ME Itkis, J Gao, B Zhao, HC Robert, Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Composites Science and Technology 2006;66 :1187–1194
    [22] BK Zhu, SH Xie, ZK Xu, YYXu. Preparation and properties of the polyimide/multi-walled carbon nanotube(MWNTs) nanocomposites. Composites Science and Technology 2006;66:548~554
    [23]L Qu, Y Lin, HE Darron, B Zhou, W Wang, X Sun, A Kitaygorodskiy, M Suarez, JW Connell, LF Allard and YP Sun. Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films. Macromolecules 2004;37:6055-6060
    [24] JJ Ge, D Zhang, Q Li, H Hou, MJ Graham, L Dai, FW Harris, SZD Cheng. Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides. Journal of American Chemical Society 2005;127:9984-9985.
    [25] D Hill, Y Lin, L Qu, A Kitaygorodskiy, JW Connell, AF Lawrence, YP Sun. Functionalization of Carbon Nanotubes with Derivatized Polyimide. Macromolecules 2005;38:7670-7675
    [26] T Saito, K Matsushige, KTanaka. Chemical treatment and modification of multi-walled carbon nanotubes. Physical B 2002;323(1-4):280-283.
    [27] RA Nyquist, CL Putzig, TL Clark and AT McDonald. Infrared study of intramolecularly hydrogen bonded aromatic carbonyl containing compounds in carious solvents. Vibrational Spectroscopy 1996;12 :93-102
    [28]V Gutmann. The Donor-Acceptor Approach to Molecular Interactions. Plenum Press, New York, 1978, p.29
    [29] KL Mittal, POLYIMIDE Synthesis, Characterization, and Applications. Plenum Press, New York, 1984, p.589
    [30] P Biju, JK Abraham, A Chandrasekhar and VK Varadan. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Materials and Structures 2003;12 :935–939.
    [31] T Someya, J Small, P Kim, C Nuckolls, JT Yardley. Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors. Nano Letters 2003;3(7):877–881.
    [32] GR Hutchison, MA Ratner, TJ Marks and R Naaman. Adsorption of Polar Molecules on a Molecular Surface. Journal of Physical Chemistry B 2001;105: 2881–2884

    第六章參考文獻
    1. Y Ying, RK Saini, F Liang, AK Sadana, WE Billups. Functionalization of Carbon Nanotubes by Free Radicals. Organic Letters 2003, 5, 1471–1473
    2. J March. Advanced Organic Chemistry, 3rd ed; Wiley: New York, 1985; Chapter 14, pp 608–618.
    3. 阮韶銘 國立清華大學碩士論文 2005年
    4. D Wilson, HD. Stenzenberger, P M Hergenrother. Polyimides. Blackie Glasgow and London, Chapman and Hall, New York, USA (1990),Mittal KL, POLYIMIDE Synthesis, Characterization, and Applications. Plenum Press, New York, 1984, p.589
    5. NH Tai, MK Yeh, JH Liu. Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement. Carbon 2004;42:2735–2777
    6. KJ Shea, DA Loy, O Wester, Arylsilsesquioxane Gels and Related Materials. New Hybrids of Organic and Inorganic Networks. Journal of the American Chemical Society 1992;114:6700.

    第七章參考文獻
    1. S Iijima. Helical microtubes of graphitic carbon. Nature, 1991;56:354
    2. J Sandler, M Shaffer,T Prasse, W Bauhofer, K Schulte and AH Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999;40:5967-5971.
    3. H Geng, R Rosen, B Zheng, H Shimoda, L Fleming and JZ Liu. Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes. Advanced materials 2002;14:1387-1390.
    4. MS Dresselhaus, G Dresselhaus and PC Eklund. Science of Fullerenes and Carbon Nanotubes. Academic Press: San Diego. 1996
    5. F Beguin, P Ehrburger. Special issue on carbon nanotubes. Carbon 2002;40:1619.
    6. S Subramoney. Structure, properties, and potential applications. Advanced Materials 1998;10:1157-73
    7. BI Yakobson and RE Smalley Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist 1997;85:324-30.
    8. P Potschke, RA Bhattacharyy and A Janke. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate Polymer 2003;44:8061–8069.
    9. T McNally, P Potschke, P Halley, M Murphy, D Martin, SEJ Bell, GP Brennan, D Bein, P Lemoine, JP Quinn. Polyethylene multiwalled carbon nanotube composites. Polymer 2005;46 :8222–8232.
    10. W Tang, MH Santare and SG Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003; 41(14):2779-2785.
    11. MK Seo, JR Lee and SJ Park. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes Materials Science and Engineering A 2005;404 :79–84
    12. Z Yang, B Dong, Y Huang, L Liu, FY Yan, HL Li. A study on carbon nanotubes reinforced poly(methyl methacrylate) nanocomposites Materials Letters 2005;59:2128– 2132.
    13. H Zeng, C Gao, Y Wang, PCP Watts, H Kong , X Cui and D Yan. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 2006;47 :113–122
    14. J Bae, J Jang and SH Yoon. Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction. Macromolecular Chemistry and Physics 2002; 203: 2196-2204.
    15. JH Du, Z Ying, S Bai, F Li, C Sun and HM Cheng. Microstructure and Resistivity of Carbon Nanotube and Nanofiber/Epoxy Matrix Nanocomposite. International Journal of Nanoscience, 2002;1(5, 6 ):719~723.
    16. A Allaoui, S Bai, HM Cheng and JB Bai. Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology 2002;62:1993~1998.
    17. A Eitan, K Jiang, D Dukes, R Andrews and LS Schadler. Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites. Chemistry of Materials 2003;15:3198~3201.
    18. ES Choi, JS Brooks, DL Eaton, MS Al-Haik, MY Hussaini, H Garmestani, D Li and K Dahmen. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics 2003; 94(9):1
    19. JJ Jyongsik, J Bae and SHYoon. A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. Journal of Materials Chemistry 2003;13: 676-681.
    20. HG Florian, J Nastalczyk, Z Roslaniec and K Schulte. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters 2003;370 :820~824.
    21. J Zhu, JD Kim, H Peng, JL Margrave, VN Khabashesku and EV Barrera. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Letters, 2003;3(8): 1107~1113.
    22. JKW Sandler, JE Kirk, IA Kinloch, MSP Shaffer, AH Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003;44:5893-5899.
    23. KT Hsiao, J Alms and SG Advani. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites Nanotechnology, 2003;14:791.
    24. L Valentini, D Puglia, E Frulloni, I Armentano, JM Kenny, S Santucci, Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Composite Science and Technology 2004;64:23~33.
    25. Q Li, M Zaiser and V Koutsos. Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent Physica status solidi a 2004;201:R89
    26. Y Breton, GD Esarmot, JP Salvetat, S Delpeux, C Sinturel, F Beguin,S Bonnamy. Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 2004;42 :1027–1030
    27. Y Ren, YQ Fu, K Liao, F Li and HM Cheng. Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy. Applied physics letters, 2004; 84(15):2811.
    28. KT Lau, M Lu, CK Lam, HY Cheung, FL Sheng, HL Li. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion Composites Science and Technology 2005;65 :719–725
    29. S Barrau, P Demont, C Maraval, A Bernes and C Lacabanne, Macromolecular rapid communications 2005; 26 :390
    30. YJ Kim, TS Shin,HD Choi,JH Kwon,YC Chung and HG Yoon. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 2005;43:23–30
    31. H Miyagawa, AK Mohanty, LT Drzal and M Misra. Nanocomposites from biobased epoxy and single-wall carbon nanotubes: synthesis, and mechanical and thermophysical properties evaluation Nanotechnology, 2005;16 :118.
    32. J Suhr, N Koratkar, P Keblinski and P Ajatan.Viscoelasticity in carbon nanotube composites. Nature materials 2005; 4:134-137.
    33. MMJ Treacy﹐TW Ebbesen and JM Gibson. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996;381:678
    34. D Stauffer. Introduction to the percolation theory. London: Francis and Taylor; 1991;p.1~14, 73~86.
    35. G Hu, C Zhao, S Zhang, M Yang and Z Wang .Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 2006;47:480~488.
    36. GM Tsangaris, N Kouloumbi, S. Kyvelidis Interfacial relaxation phenomena in particulate composites of epoxy resin with copper or iron particles Materials Chemistry and Physics 1996;44:245-250
    37. H Zois, L Apekis, M Omastova, Electrical properties of carbon black-filled polymer composites. Macromolecular symposia 2001;170:249-256
    38. C Brosseau, F Boulic, P Queffelec, C Bourbigot, YL Mest, Dielectric and microstructure properties of polymer carbon black composites. Journal of Applied Physics 1997;81:882-891
    39. M. Xiao, L. Sun, J. Liu, Y. Li. Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 2002; 43:2245~2248
    40. A Kaya and HY Fang. Identification of contaminated soils by dielectric constant and electrical conductivity. Journal of Environmental Engineering 1997;123:169–177.
    41. JH Lee, MH Oh, J Park , SH Lee, KH Ahn. Dielectric dispersion characteristics of sand contaminated by heavy metal, landfill leachate and BTEX (02-104B) Journal of Hazardous Materials B 2003;105 :83–102
    42. CW Nan. Physics of inhomogeneous inorganic materials. Progress in Materials Science 1993; 37:1~116
    43. BK Zhu, SH Xie, ZK Xu and YY Xu. Preparation and properties of the polyimide/multi-walled carbon nanotube(MWNTs) composites. Composites Science and Technology 2006;66:548~554
    44. Y Xu, G Ray and B Abdel-Magid. Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Composites: Part A 2006;37:114–121

    第八章參考文獻
    [1] S Ijima. Helical microtubes of graphitic carbon. Nature, 1991;56:354
    [2] J Sandler, M Shaffer, T Prasse, W Bauhofer, K Schulte and AH Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties Polymer 1999;40:5967-5971.
    [3] H Geng, R Rosen, B Zheng, H Shimoda, L Fleming and JZ Liu. Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes. Advanced Materials 2002;14:1387-1390.
    [4] J.Han. Exploring carbon nanotubes for nanoscale devices. Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2. (1998)
    [5] F Beguin and P Ehrburger. Special issue on carbon nanotubes. Carbon 2002; 40: 1619.
    [6] S Subramoney. Novel nanocarbons. Structure, properties, and potential applications. Advanced Materials 1998;10:1157-1173
    [7] BIYakobson and RE Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist 1997;85:324-330.
    [8] W Tang, MHSantare and SG Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon, 2003;41(14):2779-2785
    [9] S Mondal. Carbon nano fiber/tube reinforced polypropylene composite: preparation, properties and application. Man-Made Textiles in India, 2003;46(9): 329-336.
    [10] Z Jia, Z Wang, C Xu, J Liang, B Wei, D Wu and S Zhu. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 1999; A271(1-2): 395-400.
    [11] M Cadek, B LeFoulgoc, JN Coleman , V Barron, J Sandler , MSP Shaffer, A Fonseca, M Vanes, K Schulte and WJ Blau. Structural and Electronic Properties of Molecular Nanostructures, AIP Conference Proceedings, 2002; 633: 562-565.
    [12] J.Bae, J. Jang and S.H. Yoon. Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction. Macromolecular chemistry and physics 2002;203: 2196-2204
    [13] JJ Jyongsik, J Bae and SH Yoon. A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. Journal of Materials Chemistry 2003; 13: 676-681.
    [14] SM Yuen, CCM Ma, HH Wu, HC Kuan, WJ Chen, SH Liao, CW Hsu, HL Wu, Preparation, Thermal, Electrical and Morphological properties of Multiwalled Carbon Nanotubes (MWCNT)/Epoxy composites, Journal of Applied Polymer Science 2007; 103:1272–1278
    [15] H Kong, C Gao, D Yan. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. Journal of the American Chemical Society 2004;126:412-413.
    [16] Z Yao, N Braidy, GA Botton, A Adronov. “Polymerization from the Surface of Single-Walled Carbon Nanotubes - Preparation and Characterization of Nanocomposites” Journal of the American Chemical Society 2003; 125:16015-16024.
    [17] S Qin, D Qin, WT Ford, DE Resasco, JE Herrera. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate. Journal of the American Chemical Society 2004;126:170-176.
    [18] D Baskaran, JW Mays, MS Bratcher. Polymer-Grafted Multiwalled Carbon Nanotubes through Surface-Initiated Polymerization. Angewandte chemie international edition 2004; 43:2138 -2142.
    [19] H Kong, P Luo, C Gao and D Yan. Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 2005;46:2472–2485
    [20] HC Kuan, CCM Ma, WP Chang , SM Yuen, HH Wu and TM Lee. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology 2005;65(11-12):1703-1710
    [21] CL Chiang and CCM Ma. Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. European Polymer Journal 2002;38: 2219~2224.
    [22] CL Chiang, CCM Ma, FY Wang, HC Kuan. Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites. European Polymer Journal 2003;39:825~830
    [23] CL Chiang, FY Wang, CCM Ma and HR Chang. Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method. Polymer Degradation and Stability 2002;77:273~278
    [24] KJ Shea, DA Loy, O Webster. Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. Journal of the American Chemical Society 1992; 114:6700-6710
    [25] F Liu, L Fu, J Wang, Q Meng, H Li, J Guo and H Zhang. Luminescent film with terbium-complex-bridged polysilsesquioxane. New Journal of Chemistry 2003; 27:233-235
    [26] TM Lee, CCM Ma, CW Hsu and HL Wu. Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes. Polymer 2005;46:8286~8296.
    [27] Y Chen, RC Haddon, S Fang, AM Rao, PC Eklund, WH Lee, EC Dickey, EA Grulke, JC Pendergrass, A Chavan, BE Haley and RE Smalley. Chemical attachment of organic functional groups to a single-walled carbon nanotube material. Journal of materials research 1998:13:2423
    [28]SM Yuen, CCM Ma, YY Lin, HC Kuan. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Composites Science and Technology 2007;67:2564–2573.

    第九章參考文獻
    [1] P Potschke, RA Bhattacharyy, A Janke. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 2003; 44:8061–8069
    [2] T McNally, P Potschke, P Halley, M Murphy, D Martin, SEJ Bell, GP Brennan, D Bein, P Lemoine, JP Quinn. Polyethylene multiwalled carbon nanotube composites. Polymer 2005;46:8222–8232.
    [3] W Tang, MH Santare, SG Advani, Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003 ; 41(14):2779-2785.
    [4] MK Seo, JR Lee, SJ Park. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes. Materials Science and Engineering A 2005;404:79–84
    [5] Z Yang, B Dong, Y Huang, L Liu, FY Yan, HL Li. A study on carbon nanotubes reinforced poly(methyl methacrylate) nanocomposites. Materials Letters 2005; 59: 2128– 2132
    [6] H Zeng, C Gao, YP Wang, PCP Watts, H Kong , XW Cui, D Yan. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 2006;47 :113–122
    [7] KT Lau, C Gu and D Hui. A Critical Review on Nanotube and Nanotube/Nanoclay related Polymer Composites Materials. Composites: Part B 2006;37:425–436
    [8] ET Thostenson, CY Li, TW Chou. Nanocomposites in context. Composites Science and Technology 2005;65 (3-4):491-516.
    [9] S Iijima, Helical microtubes of graphitic carbon.Nature 1991; 56:354
    [10] KT Lau, M Lu and K Liao. Improved mechanical properties of coiled nanotubes reinforced epoxy nanocomposites. Composites: Part A 2006;37:1837–1840
    [11] MMJ Treacy,TW Ebbesen, JM Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature 1996; 381: 678-680
    [12] SM Yuen, CCM Ma, HH Wu, HC Kuan, WJ Chen, SH Liao, CW Hsu, HL Wu. Preparation, Thermal, Electrical and Morphological properties of Multiwalled Carbon Nanotubes (MWCNT)/Epoxy composites. Journal of Applied Polymer Science 2007; 103: 1272–1278
    [13] A Hirsch. Functionalization of Single-Walled Carbon Nanotubes. Angewandte Chemie International Edition 2002; 41: 1853~1859.
    [14] HC Kuan, CCM Ma, WP Chang , SM Yuen, HH Wu, TM Lee. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 2005; 65:1703–1710
    [15] SM Yuen, CCM.Ma, YY Lin, HC Kuan. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Composites Science and Technology 2007;67:2564–2573
    [16] BK Zhu, SH Xie, ZK Xu, YY Xu. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites Composites Science and Technology. 2006;66: 548–554
    [17] HL Wu, YT Yang, CCM Ma, HC Kuan. Molecular Mobility of Free-Radical-Functionalized Carbon-Nanotube/Siloxane/Poly(urea urethane) Nanocomposites. Journal of Polymer Science: Part A: Polymer Chemistry, 2005; 43: 6084–6094.
    [18] P Vincent, A Brioude, C Journet, S Rabaste, ST Purcell, JL Brusq, JC Plent. Inclusion of carbon nanotube in a TiO2 sol-gel matrix. Journal of Non-Crystaline Solids 2002; 311: 130-137
    [19] J Sun, L Gao. Development of a dispersion process for carbon nanotube in ceramic matrix by heterocoagulation. Carbon 2003; 41: 1063-1068
    [20] A Jitianu, T Cacciaguerra, R Benoit, S Delpeux, F Beguin, S Bonnamy. Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 2004; 42: 1147–1151
    [21] PC Ma, JK Kim, BZ Tang. Functionalization of carbon nanotubes using a silane coupling agent. Carbon 2006;44:3232–3238
    [22] J Sandler, MShaffer, T Prasse, W Bauhofer, K Schulte and AH Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer; 1999;40:5967-5971.

    第十章參考文獻
    [1] J Sandler, M Shaffer, T Prasse, W Bauhofer, K Schulte, AH Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999; 40: 5967-5971.
    [2] H Geng, R Rosen, B Zheng, H Shimoda, L Fleming, JZ Liu. Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes. Advanced Materials 2002;14: 1387-1390.
    [3] J Han. Exploring carbon nanotubes for nanoscale devices. Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2. (1998)
    [4] F Beguin, P Ehrburger, Special issue on carbon nanotubes. Carbon 2002;40:1619.
    [5] S Subramoney. Novel nanocarbons. Structure, properties, and potential applications. Advanced Materials 1998;10:1157-73
    [6] BI Yakobson and RE Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist 1997; 85:324-30
    [7] S Iijima. Helical microtubes of graphitic carbon. Nature 1991, 56:354
    [8] W Tang, MH Santare and SG Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003; 41(14): 2779-2785.
    [9] S Mondal. Carbon nano fiber/tube reinforced polypropylene composite: preparation, properties and application. Man-Made Textiles in India 2003; 46(9): 329-336
    [10] SM Yuen, CCM. Ma, CL Chiang, JA Chang, SW Huang, SC Chen, CY Chuang, CC Yang, MH Wei. Silane-modified MWCNT/PMMA composites – Preparation, electrical resistivity, thermal conductivity and thermal stability. Composites: Part A. 2007;38:2527–2535.
    [11] SMYuen, CC M. Ma, CY Chuang, KC Yu, SY Wu, CC Yang, MH Wei. Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. Composites Science and Technology 2008;68:4963-4968
    [12] JH Du, Z Ying, S Bai, F Li, C Sun and HM Cheng, Microstructure and Resistivity of Carbon Nanotube and Nanofiber/Epoxy Matrix Nanocomposite. International Journal of Nanoscience, 2002;1(5 & 6) :719~723.
    [13] A Allaoui, S Bai, HM Cheng, JB Bai. Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology 2002 ; 62: 1993~1998.
    [14] ET Thostenson, TW Chou. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006;44:3022-3029.
    [15] ES Choi, JS Brooks, DL Eaton, MS Al-Haik, MY Hussaini, H Garmestani, D Li and K Dahmen. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics 2003; 94(9): 1
    [16] SM Yuen, CCM. Ma, HH Wu, HC Kuan, WJ Chen, SH Liao, CW Hsu, HL Wu. Preparation and Thermal, Electrical, and Morphological Properties of Multiwalled Carbon Nanotube and Epoxy Composites. Journal of Applied Polymer Science 2007; 103:1272–1278
    [17] KT Lau, M Lu, CK Lam, HY Cheung, FL Sheng, HL Li. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion Composites Science and Technology 2005;65: 719–725
    [18] L Valentini, D Puglia, E Frulloni, I Armentano, JM Kenny, S Santucci, Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Composite Science and Technology 2004;64: 23~33.
    [19] J Zhu, JD Kim, H Peng, JL Margrave, VN Khabashesku, and EV Barrera, Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Letters, 2003; 3(8): 1107~1113
    [20] JKW Sandler, JE Kirk, IA Kinloch, MSP Shaffer, AH Windle. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003; 44: 5893-5899.
    [21] B Kim, J Lee, and I Yu, Electrical properties of single-wall carbon nanotube and epoxy composites. Journal of Applied Physics 2003; 94(10): 15
    [22] J Xiong, D Zhou, Z Zheng, X Yang, X Wang. Fabrication and distribution characteristics of polyurethane/single-walled carbon nanotube composite with anisotropic structure. Polymer 2006;47 :1763–1766
    [23] YYang, X Xie, J Wu, Z Yang, X Wang, YWMai. Multiwalled Carbon Nanotubes Functionalized by Hyperbranched Poly(urea-urethane)s by a One-Pot Polycondensation. Macromolecular rapid communications 2006; 27(19):1695-1701
    [24] SM Yuen, CCM Ma, YY Lin, HC Kuan. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Composites Science and Technology 2007;67 :2564–2573
    [25] SM Yuen, CCM. Ma, CL Chiang, YY Lin, CC Teng. Preparation and Morphological, Electrical, and Mechanical Properties of Polyimide-Grafted MWCNT/Polyimide Composite. Journal of Polymer Science: Part A: Polymer Chemistry. 2007;45:3349–3358.
    [26] SM Yuen, CCM. Ma, CL Chiang, CC Teng, YH Yu. Poly(vinyltriethoxysilane) Modified MWCNT/Polyimide Nanocomposites—Preparation, Morphological, Mechanical, and Electrical Properties. Journal of Polymer Science: Part A: Polymer Chemistry 2008;46:803-816
    [27] SM Yuen, CCM. Ma, CY Chuang, YH Hsiao, CL Chiang, AD Yu. Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites. Composites: Part A 2007;39:119-125.
    [28] A. Jitianu , T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites Carbon 2004;42 :1147–1151

    第十一章參考文獻
    [1] J Sandler, M Shaffer, T Prasse, W Bauhofer, K Schulte and AH Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999;40:5967-5971.
    [2] J Han. Exploring carbon nanotubes for nanoscale devices. Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2. (1998)
    [3] F Beguin, P Ehrburger. Special issue on carbon nanotubes. Carbon 2002; 40: 1619.
    [4] S Subramoney. Novel nanocarbons. Structure, properties, and potential applications. Advanced Materials 1998; 10:1157-1173
    [5] BI Yakobson and RE Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist 1997; 85:324-330.
    [6] W Tang, MH Santare and SG Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003; 41(14), 2779-2785
    [7] Z Zhou, S Wang, Y Zhang, Y Zhang. Effect of Different Carbon Fillers on the Properties of PP Composites: Comparison of Carbon Black with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science 2006; 102: 4823–4830
    [8] JW Xiong, Z Zheng, XM Qin, M Li, HQ Li, XL Wang. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 2006; 44(13): 2701-2707.
    [9] YK Yang, XL Xie, JG Wu, YW Mai. Synthesis and self-assembly of polystyrene-grafted multiwalled carbon nanotubes with a hairy-rod nanostructure. Journal of Polymer Science, Part A: Polymer Chemistry 2006; 44(12): 3869-3881.
    [10] Z Jia, Z Wang, C Xu, J Liang, B Wei, D Wu, S Zhu. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering A 1999 ; 271: 395–400
    [11] SJ Park, MS Cho, ST Lim, HJ Choi, MS Jhon. Synthesis and Dispersion Characteristics of Multi-Walled Carbon Nanotube Composites with Poly(methyl methacrylate) Prepared by In-Situ Bulk Polymerization. Macromolecular rapid communications 2003; 24: 1070–1073
    [12] P Biju, KA Jose, Anupama C and Vijay KV. Carbon nanotube/PMMA composite thin films for gas-sensing applications Smart Materials and Structures 2003; 12: 935–939
    [13] L Qu, Y Lin, DE Hill, B Zhou, W Wang, X Sun, A Kitaygorodskiy, M Suarez, JW Connell, LF Allard and YP Sun, Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films. Macromolecules 2004;37: 6055-6060
    [14] Z Yang, B Dong, Y Huang, L Liu, FY Yan, HL Li. A study on carbon nanotubes reinforced poly(methyl methacrylate) nanocomposites. Materials Letters 2005; 59: 2128– 2132
    [15] T Kashiwagi, F Du, KI Winey, KM Groth, JR Shields, SP Bellayer, H Kim, JF Douglas. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer 2005 ;46: 471–481
    [16] A Eitan, K Jiang, D Dukes, R Andrews and LS Schadler. Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites. Chemistry of Materials 2003;15: 3198~3201.
    [17] H Kong, C Gao, D Yan. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. Journal of the American Chemical Society 2004;126:412.
    [18] Z Yao, N Braidy, GA Botton, A Adronov. Polymerization from the Surface of Single-Walled Carbon Nanotubes - Preparation and Characterization of Nanocomposites. Journal of the American Chemical Society 2003; 125:16015.
    [19] S Qin, D Qin, WT Ford, DE Resasco, JE Herrera. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate. Journal of the American Chemical Society 2004;126:170-176.
    [20] D Baskaran, JW Mays, MS Bratcher. Polymer-Grafted Multiwalled Carbon Nanotubes through Surface-Initiated Polymerization. Angewandte chemie international edition 2004; 43:2138.
    [21] H Kong, P Luo, C Gao, D Yan. Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 2005; 46: 2472–2485
    [22] SM Yuen, CCM. Ma, YYLin, HC Kuan. Preparation, Morphology and Properties of acid and amine modified Multiwalled Carbon Nanotube/Polyimide Composite. Composites Science and Technology. Composites Science and Technology 2007;67:2564–2573
    [23] SM Yuen, CCM. Ma, CL Chiang, YY Lin, CC Teng. Preparation and Morphological, Electrical, and Mechanical Properties of Polyimide-Grafted MWCNT/Polyimide Composite. Journal of Polymer Science: Part A: Polymer Chemistry 2007; 45:3349–3358 .
    [24] KJ Shea, DA Loy, O Webster. Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. Journal of the American Chemical Society 1992; 114:6700-6710
    [25] F Liu, L Fu, J Wang, Q Meng, H Li, J Guo and H Zhang. Luminescent film with terbium-complex-bridged polysilsesquioxane. New Journal of Chemistry 2003; 27:233-235
    [26] P Kim, L Shi, A Majumdar and PL McEuen. Thermal transport measurement of individual multiwalled nanotube. Physical review letters 2001; 87(215502): 1-4
    [27] A Bagchi, S Nomura. On the effective thermal conductivity of carbon nanotube reinforced polymer composites.Composites Science and Technology 2006; 66: 1703–1712
    [28] J Li, LF Tong, ZP Fang, AJ Gu, ZB Xu. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polymer Degradation and Stability 2006; 91: 2046-2052

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE