研究生: |
陳姿伶 Chen, Tzu Ling |
---|---|
論文名稱: |
量子點雷射之NICE-OHMS光譜及共振腔增強原子宇稱不守恆之可行性研究 Study of Cavity-Enhanced Atomic Parity Non-Conservation with Quantum Dot Laser Based NICE-OHMS Spectroscopy |
指導教授: |
劉怡維
Liu, Yi Wei |
口試委員: |
施宙聰
孔慶昌 許豔珠 蔡錦俊 鄭王曜 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 178 |
中文關鍵詞: | 宇稱不守恆 、光譜 、量子點二極體 、外腔式二極體雷射 、光學共振腔 、穩頻 |
外文關鍵詞: | NICE-OHMS, parity non-conservation, cavity-enhanced |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究以光學共振腔架構增強線偏振旋轉方法量測原子中宇稱不守恆效應的可能性。在共振腔偏振儀架構下,我們首次提出利用雷射光與原 子束非正交時造成的都卜勒頻移(Doppler shift),將線性共振腔中將原本會來 回抵消的線偏振旋轉特性巧妙地轉換成可來回連續增強。這樣的共振腔架構與 NICE-OHMS(噪音自動消除共振腔與頻率解調之分子光譜儀)技術結合後便是 一個擁有絕佳靈敏度且有機會到達散粒噪音基準(shot-noise limit)的偏振儀。 本論文中,我們以1.28微米量子點雷射做為光源,並用精細度高達18500的光學 共振腔建立了NICE-OHMS系統,這是在量測宇稱不守恆前重要的初步結果。
1.28微米是以線偏振旋轉方式量測原子宇稱不守恆中重要的波段,因它的 能量剛好滿足幾種不同原子宇稱不守恆相關的磁偶極矩躍遷(magnetic dipole moment transition),例如鉛、鉈和鐿。為了產生1.1到1.3微米波段的穩定光源, 我們研究了新型量子點二極體雷射(Quantum-dot laser)在外腔式共振腔架構下 的光譜特性,其中我們觀察到其因發光區域不均勻增益造成過多的殘餘殘餘自 發輻射光,在實驗架設中我們加入額外光柵將其濾除因而增加進入高精細度光 學共振腔的耦合效率。
在NICE-OHMS中我們使用光纖耦合的相位調制器(fiber-coupled electro- optical modulator)達成頻率調制以及鎖頻,並完成800 kHz寬頻帶的穩頻電路將 量子點外腔式二極體雷射成功鎖在高精細度光學共振腔上,雷射鎖頻後量得的 穩定度為1 kHz(1微秒的積分時間),隨後加入頻率調制成功建立了NICE- OHMS用以量測微弱吸收訊號。作為系統靈敏度的檢驗,我們以二氮化氧在1.283 微米附近的微弱躍遷作為校正訊號,在訊噪比30以及氣壓54微托耳下,回推得 最小雜訊等效吸收係數(noise-equivalent absorption coefficient)為5.3×10-10 cm-1Hz-1,其對應在一秒積分時間下的最小吸收能力為6×10-9 程度,這結果與目 前其他研究群所建立的NICE-OHMS系統相比是相當的。
This work is to demonstrate the feasibility of a cavity-enhanced parity non-conservation (PNC) induced optical rotation experiment. It proposes that, with a non-orthogonal atomic beam system, the reciprocal circular birefringence of PNC induced optical rotation can be cleverly converted to non-reciprocal circular birefringence and hence provide a continued increase of optical rotation in a linear cavity. Such an enhancement cavity configuration can be an ultrasensitive polarimeter based on noise-immune cavity enhanced optical heterodyne molecular spectrometer (NICE-OHMS) technique. In this thesis, a 1.28 um NICE-OHMS apparatus has been constructed for the future PNC experiment.
The wavelength region of 1.28 um is particularly important for several magnetic dipole transitions of various atomic systems for PNC optical rotation measurements, such as lead, thallium, ytterbium and iodine.
To access the wavelength of the 1.1-1.3 um region, the spectroscopic characteristics of a quantum-dot (QD) laser with the external cavity configuration were investigated. The residual electroluminescence, due to the inhomogeneous broadening of QD gain medium, was observed and filtered out using a grating.
While a fiber-coupled electro-optical modulator (EOM) was employed, a wide-bandwidth (~800 kHz) locking of a QD-ECDL to a high-finesse (F=18500) cavity had been demonstrated using the Pound-Drever-Hall technique. The laser linewidth of the QD-ECDL has been narrowed to 1 kHz level (1 ms), then the laser was applied to NICE-OHMS for observing weak transitions.
The spectrum of weak nitrous oxide transitions at 1.283 um are obtained with a signal-to-noise ratio of 30 for gas pressure of 54~mTorr. For system diagnosis, the minimum noise-equivalent absorption coefficient, alpha_{min}, 5.3*10^{-10} cm^{-1}Hz^{-1}, had been reached. That infers the minimum fractional absorption to be 6*10^{-9} at 1 s integration time, comparable to the other Doppler-broadened NICE-OHMS experiments.
[1] T. D. Lee and C. N. Yang, “Question of parity conservation in weak interactions,” Phys. Rev. 104, 254–258 (1956).
[2] V. A. Alekseev, B. Y. Zel’dovich, and I. I. Sobel’man, “Parity non-conservation effects in atoms,” Soviet Physics Uspekhi 19, 207 (1976).
[3] M.-A. Bouchiat and C. Bouchiat, “Weak neutral currents in atomic physics,” Phys. Lett. B 48, 111 – 114 (1974).
[4] M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991).
[5] D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High- precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[6] P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[7] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
[8] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[9] M.-A. Bouchiat and C. Bouchiat, “Parity violation in atoms,” Rep. Prog. Phys. 60, 1351 (1997).
[10] I. Khriplovich, Parity nonconservation in atomic phenomena (Philadelphia, PA (United States); Gordon and Breach Science Publishers, 1991).
[11] K. Kumar, S. Mantry, W. Marciano, and P. Souder, “Low energy measurements of the weak mixing angle,” arXiv preprint arXiv:1302.6263 (2013).
[12] W. C. Haxton and B. R. Holstein, “Hadronic parity violation,” Prog. Part. Nucl. Phys. 71, 185 – 203 (2013). Fundamental Symmetries in the Era of the {LHC}.
[13] B. Desplanques, J. F. Donoghue, and B. R. Holstein, “Unified treatment of the parity violating nuclear force,” Ann. Phys. 124, 449 – 495 (1980).
[14] J. A. Behr and G. Gwinner, “Standard model tests with trapped radioactive atoms,” J. Phys. G: Nucl. Part. Phys. 36, 033101 (2009).
[15] W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, “Nuclear anapole moments,” Phys. Rev. C 65, 045502 (2002).
[16] S. G. Porsev, K. Beloy, and A. Derevianko, “Precision determination of weak charge of 133Cs from atomic parity violation,” Phys. Rev. D 82, 036008 (2010).
[17] M. G. Kozlov, S. G. Porsev, and W. R. Johnson, “Parity nonconservation in thallium,” Phys. Rev. A 64, 052107 (2001).
[18] S. J. Phipp, N. H. Edwards, P. E. G. Baird, and S. Nakayama, “A measurement of parity non-conserving optical rotation in atomic lead,” Journal of Physics B: Atomic, Molecular and Optical Physics 29, 1861 (1996).
[19] M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium: A low-energy test of the electroweak theory,” Phys. Rev. Lett. 61, 310–313 (1988).
[20] J. Gu ́ena, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S-7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[21] J. Gu ́ena, M. Lintz, and M. A. Bouchiat, “Measurement of the parity violating 6S-7S tran- sition amplitude in cesium achieved within 2 × 10−13 atomic-unit accuracy by stimulated- emission detection,” Phys. Rev. A 71, 042108 (2005).
[22] K. Tsigutkin, D. Dounas-Frazer, A. Family, J. E. Stalnaker, V. V. Yashchuk, and D. Bud- ker, “Observation of a large atomic parity violation effect in ytterbium,” Phys. Rev. Lett. 103, 071601 (2009).
[23] V. Dzuba and V. Flambaum, “Current trends in searches for new physics using measure- ments of parity violation and electric dipole moments in atoms and molecules,” arXiv preprint arXiv:1009.4960 (2010).
[24] L. W. Wansbeek, B. K. Sahoo, R. G. E. Timmermans, K. Jungmann, B. P. Das, and D. Mukherjee, “Atomic parity nonconservation in Ra+,” Phys. Rev. A 78, 050501 (2008).
[25] E. Gomez, L. A. Orozco, and G. D. Sprouse, “Spectroscopy with trapped francium: ad- vances and perspectives for weak interaction studies,” Rep. Prog. Phys. 69, 79 (2006).
[26] I. Khriplovich, “Nuclear-spin-dependent parity-nonconserving effects in thallium, lead and bismuth atoms,” Phys. Lett. A 197, 316 – 325 (1995).
[27] W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, “Anapole moment and other con- straints on the strangeness conserving hadronic weak interaction,” Phys. Rev. Lett. 86, 5247–5250 (2001).
[28] W. C. Haxton and C. E. Wieman, “Atomic nonconservation and nuclear anapole mo- ments,” Annu. Rev. Nucl. Part. Sci. 51, 261–293 (2001).
[29] V. A. Dzuba, V. V. Flambaum, and M. S. Safronova, “Breit interaction and parity non- conservation in many-electron atoms,” Phys. Rev. A 73, 022112 (2006).
[30] J. Ginges and V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Reports 397, 63–154 (2004).
[31] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, “Combination of the many-body perturbation theory with the configuration-interaction method,” Phys. Rev. A 54, 3948– 3959 (1996).
[32] SafronovaM.S., “Atomic calculations for tests of fundamental physics1. 1this review is part of a special issue on the 10th international colloquium on atomic spectra and oscillator strengths for astrophysical and laboratory plasmas.” Can. J. Phys. 89, 371–378 (2011).
[33] U. I. Safronova, M. S. Safronova, and W. R. Johnson, “Excitation energies, hyperfine constants, E1, E2, and M1 transition rates, and lifetimes of 6s2nl states in Tl I and Pb II,” Phys. Rev. A 71, 052506 (2005).
[34] M. Vallet, F. Bretenaker, A. L. Floch, R. L. Naour, and M. Oger, “The malus fabryperot interferometer,” Opt. Commun. 168, 423 – 443 (1999).
[35] J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[36] D. F. Kimball, “Parity-nonconserving optical rotation on the 6s6p3P0 → 6s6p1P1 transi- tion in atomic ytterbium,” Phys. Rev. A 63, 052113 (2001).
[37] G. E. Katsoprinakis, L. Bougas, T. P. Rakitzis, V. A. Dzuba, and V. V. Flambaum, “Calculation of parity-nonconserving optical rotation in iodine at 1315 nm,” Phys. Rev. A 87, 040101 (2013).
[38] M. Grundmann, “The present status of quantum dot lasers,” Physica E: Low-dimensional Systems and Nanostructures 5, 167 – 184 (1999).
[39] D. S. Richardson, R. N. Lyman, and P. K. Majumder, “Hyperfine splitting and isotope- shift measurements within the 378-nm 6P1/2 −7S1/2 transition in 203Tl and 205Tl,” Phys. Rev. A 62, 012510 (2000).
[40] G. Hermann, G. Lasnitschka, and D. Spengler, “Hyperfine structures and level isotope shifts of the n2S1/2(n= 7–12)-and n2D3/2,5/2 (n= 6–10)-levels of 203,205Tl measured by atomic beam spectroscopy,” Z. Phys. D 28, 127–134 (1993).
[41] D. Budker and D. Kimball, Atomic physics: an exploration through problems and solutions (OXFORD, 2004), p. 154, 2nd ed.
[42] Y.-H. Lien, K.-J. Lo, H.-C. Chen, J.-R. Chen, J.-Y. Tian, J.-T. Shy, and Y.-W. Liu, “Absolute frequencies of the 6,7Li 2s 2S1/2 → 3s 2S1/2 transitions,” Phys. Rev. A 84, 042511 (2011).
[43] V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 − 6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[44] M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B: At. Mol. Phys. 17, L661 (1984).
[45] M. Prentiss and S. Ezekiel, “Observation of intensity-dependent fluorescence line-shape asymmetry for two-level atoms in a standing-wave field,” Phys. Rev. Lett. 56, 46 (1986).
[46] H. Flores-Llamas, “Asymmetries of the voigt line shape,” J. Appl. Cryst. 34, 136–143 (2001).
[47] Kurucz, “Atomic spectral line database.” Is available online at: ; P. L. Smith, C. Heise, J. R. Esmond, and R. L. Kurucz (unpublished).
[48] R. Neugart, H. H. Stroke, S. A. Ahmad, H. T. Duong, H. L. Ravn, and K. Wendt, “Nuclear magnetic moment of 207Tl,” Phys. Rev. Lett. 55, 1559–1562 (1985).
[49] C. J. Schuler, M. C ̧iftan, I. L. C. Bradley, and H. H. Stroke, “Hyperfine structure and iso- tope shift in the 72S1/2- 62P1/2 transition of natural thallium by atomic beam absorption,” J. Opt. Soc. Am. 52, 501–503 (1962).
[50] A. Lurio and A. G. Prodell, “Hfs separations and hfs anomalies in the 2P1 state of Ga69, 2Ga71, Tl203, and Tl205,” Phys. Rev. 101, 79–83 (1956).
[51] A.-M. M ̊artensson-Pendrill, “Magnetic moment distributions in tl nuclei,” Phys. Rev. Lett. 74, 2184 (1995).
[52] V. Dzuba, V. Flambaum, M. Kozlov, and S. Porsev, “Using effective operators in calculating the hyperfine structure of atoms,” JETP 87, 885–890 (1998).
[53] G. Gould, “Hfs separations and hfs anomaly in the 62P3 metastable level of Tl203 and 2Tl205,” Phys. Rev. 101, 1828–1829 (1956).
[54] E. B. Baker and L. Burd, “Frequency-swept and proton-stabilized nmr spectrometer for all nuclei using a frequency synthesizer,” Rev. Sci. Instrum. 34, 238–243 (1963).
[55] A. Barzakh, L. K. Batist, D. Fedorov, V. Ivanov, K. Mezilev, P. Molkanov, F. Moroz, S. Y. Orlov, V. Panteleev, and Y. M. Volkov, “Hyperfine structure anomaly and magnetic moments of neutron deficient Tl isomers with I= 9/2,” Phys. Rev. C 86, 014311 (2012).
[56] F. Schreier, “The voigt and complex error function: A comparison of computational meth- ods,” J. Quant. Spectrosc. Radiat. Transfer 48, 743 – 762 (1992).
[57] D. Romanini, I. Ventrillard, G. Mejean, J. Morville, and E. Kerstel, “Introduction to cav- ity enhanced absorption spectroscopy,” in “Cavity-Enhanced Spectroscopy and Sensing,” (Springer, 2014), pp. 1–60.
[58] K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
[59] J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980–6990 (2002).
[60] J. Poirson, F. Bretenaker, M. Vallet, and A. L. Floch, “Analytical and experimental study of ringing effects in a fabry–perot cavity. application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[61] G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (fm) spec- troscopy; theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
[62] R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[63] M. Gehrtz, E. A. Whittaker, and G. C. Bjorklund, “Quantum-limited laser frequency- modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
[64] A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of elec- tromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[65] L. Bougas, G. E. Katsoprinakis, W. von Klitzing, J. Sapirstein, and T. P. Rakitzis, “Cavity- enhanced parity-nonconserving optical rotation in metastable Xe and Hg,” Phys. Rev. Lett. 108, 210801 (2012).
[66] Y. L. Grand and A. L. Floch, “Measurement of small optical activities by use of helicoidal waves,” Opt. Lett. 17, 360–362 (1992).
[67] D. Jacob, M. Oger, M. Vallet, F. Bretenaker, and A. L. Floch, “Supermirror phase anisotropy measurement,” Opt. Lett. 20, 671–673 (1995).
[68] K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. J. II, and B. J. McCall, “Sub-doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[69] M. Durand, J. Morville, and D. Romanini, “Shot-noise-limited measurement of sub–parts– per–trillion birefringence phase shift in a high-finesse cavity,” Phys. Rev. A 82, 031803 (2010).
[70] E. Zavattini, G. Zavattini, G. Ruoso, E. Polacco, E. Milotti, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, and M. Bregant, “Experimental observation of optical rotation generated in vacuum by a magnetic field,” Phys. Rev. Lett. 96, 110406 (2006).
[71] J. M. Smith, J. C. Bloch, R. W. Field, and J. I. Steinfeld, “Trace detection of NO2 by frequency-modulation-enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B 12, 964–969 (1995).
[72] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature de- pendence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[73] M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[74] D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[75] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. Ustinov, S. Ruvimov, M. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter et al., “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417(1) (1994).
[76] J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot lasers,” Comp. Ren. Phys. 4, 611–619 (2003).
[77] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley and Sons, 1999).
[78] Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 μm tunnel injection quantum- dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
[79] M. Kuntz, G. Fiol, M. L ̈ammlin, C. Schubert, A. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 μm ingaas quantum dot lasers,” Elec- tron. Lett. 41, 244–245 (2005).
[80] S. Li, Q. Gong, C. Cao, X. Wang, J. Yan, Y. Wang, and H. Wang, “A review of external cavity-coupled quantum dot lasers,” Opt. Quant. Electron. 46, 623–640 (2014).
[81] K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18, 19438–19443 (2010).
[82] P. Eliseev, H. Li, A. Stintz, G. Liu, T. Newell, K. Malloy, and L. Lester, “Tunable grating- coupled laser oscillation and spectral hole burning in an inas quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[83] L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[84] E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
[85] H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuleti ́c, “Influ- ence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191–9197 (2006).
[86] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940– 1949 (1958).
[87] M. Lax, “Classical noise. v. noise in self-sustained oscillators,” Phys. Rev. 160, 290–307 (1967).
[88] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[89] J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, “Cavity ringdown spec- troscopy with a continuous-wave laser: calculation of coupling efficiency and a new spec- trometer design,” Appl. Opt. 38, 1859–1866 (1999).
[90] Y. Masumoto and T. Takagahara, Semiconductor quantum dots: physics, spectroscopy and applications (Springer Science & Business Media, 2002).
[91] G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. La- pointe, P. J. Poole, and W. Render, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119–121119–3 (2006).
[92] K. G. Libbrecht and J. L. Hall, “A lownoise highspeed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[93] J. L. Hall, M. S. Taubman, and J. Ye, “Laser stabilization,” (1999).
[94] A. Cygan, D. Lisak, P. Masowski, K. Bielska, S. Wjtewicz, J. Domysawska, R. S. Trawiski, R. Ciuryo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[95] R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[96] E. D. Black, “An introduction to pound-drever-hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[97] R. Van Zee and J. P. Looney, Cavity-enhanced spectroscopies, vol. 40 (Academic Press, 2003).
[98] Y. He and B. J. Orr, “Optical heterodyne signal generation and detection in cavity ring- down spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215 – 220 (2001).
[99] Y. He and B. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002).
[100] H. Photonics, “Chapter 06: Compound semiconductor photosensors,” .
[101] N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[102] I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012).
[103] A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based nice-ohms,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[104] W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980 (2014).
[105] N.-C. Shie, C.-Y. Chang, W.-F. Hsieh, Y.-W. Liu, and J.-T. Shy, “Frequency measurement of the 6P3/2 → 7S1/2 transition of thallium,” Phys. Rev. A 88, 062513 (2013).
[106] A. Lacis, J. Hansen, P. Lee, T. Mitchell, and S. Lebedeff, “Greenhouse effect of trace gases, 1970-1980,” Geophys. Res. Lett. 8, 1035–1038 (1981).
[107] P. J. Crutzen, “Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmo- sphere,” J. Geophys. Res. 76, 7311–7327 (1971).
[108] F. S. Rowland, “Stratospheric ozone in the 21st century: the chlorofluorocarbon problem,” Environ. Sci. Technol. 25, 622–628 (1991).
[109] W. C. Trogler, “Physical properties and mechanisms of formation of nitrous oxide,” Coord. Chem. Rev. 187, 303 – 327 (1999).
[110] J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, and Z. Bielecki, “No and n2o detection employing cavity enhanced technique,” Proc. SPIE 8374, 837414–8 (2012).
[111] A. Liu, S. Kassi, V. Perevalov, S. Tashkun, and A. Campargue, “High sensitivity cw-cavity ring down spectroscopy of N2O near 1.28 μm,” J. Mol. Spectrosc. 267, 191–199 (2011).
[112] J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311–084311 (2006).
[113] C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-doppler spectroscopy of a molecular overtone band with a 1.66 m tunable diode laser,” Jpn. J. Appl. Phys. (1999).
[114] N. J. van Leeuwen, A. C. Wilson et al., “Measurement of pressure-broadened, ultra- weak transitions with noise-immune cavity-enhanced optical heterodyne molecular spec- troscopy,” J. Opt. Soc. Am. B 21, 1713–1721 (2004).
[115] C. Bell, G. Hancock, R. Peverall, G. Ritchie, J. van Helden, and N. van Leeuwen, “Char- acterization of an external cavity diode laser based ring cavity nice-ohms system,” Opt. Express 17, 9834–9839 (2009).
[116] H. Dinesan, E. Fasci, A. Castrillo, and L. Gianfrani, “Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Lett. 39, 2198 (2014).
[117] R. Centeno, J. Mandon, S. M. Cristescu, O. Axner, and F. J. M. Harren, “External cavity diode laser-based detection of trace gases with nice-ohms using current modulation,” Opt. Express 23, 6277–6282 (2015).
[118] M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457–3468 (2004).
[119] I. Silander, T. Hausmaninger, W. Ma, F. J. M. Harren, and O. Axner, “Doppler-broadened mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometry based on an optical parametric oscillator for trace gas detection,” Opt. Lett. 40, 439–442 (2015).
[120] I. Silander, T. Hausmaninger, W. Ma, P. Ehlers, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 4×10−13 cm−1Hz−1/2: implementation of a 50,000 finesse cavity,” Opt. Lett. 40, 2004– 2007 (2015).
[121] A. Foltynowicz, F. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[122] L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
[123] F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for doppler-broadened detec- tion of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
[124] T. Ikegami, “Angular distribution measurement of cesium atomic beam from long tube collimators,” Jpn. J. Appl. Phys. 33, 4795 (1994).
[125] S. J. Buckman, R. J. Gulley, M. Moghbelalhossein, and S. J. Bennett, “Spatial profiles of effusive molecular beams and their dependence on gas species,” Meas. Sci. Technol. 4, 1143 (1993).