簡易檢索 / 詳目顯示

研究生: 徐銓龍
Hsu, Chuan-Long
論文名稱: 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
Pharmacological mechanisms of therapeutic anti-IgE monoclonal body
指導教授: 張晃猷
Chang, Hwan-You
張子文
Chang, Tse Wen
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 101
中文關鍵詞: 樂無喘抗IgE治療藥物免疫複合體基因轉殖
外文關鍵詞: Omalizumab, anti-IgE, immune complexes, transgenci mice
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    治療用anti-IgE單株抗體(Omalizumab)是用來中和游離態IgE及減少肥大細胞及嗜鹼性白血球細胞表面高親合性IgE接受器(Fc□RI)的數量,以達到治療第一型過敏性反應的抗體藥物,然而其藥理相關的作用機制仍未被廣範且深入研究。這篇論文利用建立體外重建模式來探討,在病人投與anti-IgE藥物初期所呈現之病程改善的現象與體液中所累積的IgE: anti-IgE免疫複合體的相關性。本研究發現anti-IgE除了可迅速中和游離態IgE外,快速累積的IgE: anti-IgE免疫複合體被證實可結合過敏原。因此,以過敏原特異性IgE組成的IgE: anti-IgE免疫複合體,能在嗜鹼性顆粒白血球細胞膜上的Fc□RI鍵結對過敏原具特異性的IgE形成交叉結合前,先行競爭掉游離態過敏原,進而促成過敏原誘發之過敏反應產生鈍化的現象。
    這篇論文針對另一個本實驗室提出,未被印證的anti-IgE的藥理機制,亦即anti-IgE可否在體內調控膜嵌合型IgE(mIgE)淋巴B細胞(如淋巴纖維母細胞及記憶B細胞),進而達到阻斷IgE的生合成,作深入研究。我們首先利用單株抗體技術,製備一株結合特異性及藥理特性與omalizumab 相類似之小鼠抗人類 IgE之單株抗體,命名為ASG 16。我們進一步建立C57BL/6 品系之基因轉殖小鼠,其特性為小鼠IgE Fc CH2~CH4區塊被置換成人類IgE CH2~CH4區塊。我們利用此基因轉殖鼠,探討表現mIgE的淋巴B細胞在體內環境下能否被anti-IgE 單株抗體ASG 16所調控。結果顯示,施打ASG 16單株抗體之基因轉殖鼠膜嵌合型m□重鍊RNA轉錄子的合成能被顯著而有效的抑制。體外實驗結果顯示,ASG 16其作用機制是藉由IgG-Fc□R辯識之方式吸引巨噬細胞,以吞噬被ASG 16標定的mIgE B細胞,進而引致抗體導致的細胞抑殺機制(antibody-dependent cellular cytotoxicity , ADCC)達成調控及阻斷IgE的生成。
    膜嵌合型mIgE在RNA選擇性剪接(splicing)的過程中,能產生一種長鏈的膜嵌合亞型IgE,相較於短鏈膜嵌合型IgE,其差異是在鄰近細胞膜表面C端處能表現一段52個氨基酸長的序列(命名為C□mX 區塊) 。比對蛋白質庫及基因庫後,發現此區塊氨基酸排列相當獨特且其僅表現在人類及靈長類之mIgE B淋巴細胞上,相對於短鏈的亞型mIgE,長鏈膜嵌合亞型mIgE表現量又佔優勢。故若以此C□mX區塊做為抗體標靶,並成功發展出循理性設計的單株抗體藥物,則調控mIgE B淋巴細胞即不須先中和體液中的游離態IgE,即可調控膜嵌合亞型IgE淋巴B細胞並進而阻斷其分化成IgE分泌型漿細胞的路徑,最終達到控制IgE合成的效果。這篇論文經過數年建立C□mX基因轉殖小鼠模式,並利用此動物模式做為評估anti-C□mX單株抗體的效用及應用性。

    Abstract
    The therapeutic anti-IgE monoclonal antibodies (mAbs), which have a unique set of binding specificities to human IgE, are designed for neutralizing free IgE and inhibiting IgE production for the treatment of allergic diseases that are caused by type I hypersensitivity reaction. While anti-IgE antibody, omalizumab, has been approved in most major countries to treat patients with severe allergic asthma, the pharmacological mechanisms of anti-IgE have not been well understood. In this thesis research, we have established an in vitro re-constituted model to study the potential contribution of the rapidly accumulated IgE: anti-IgE immune complexes to the efficacious pharmacological effects of omalizumab especially in the initial few weeks after anti-IgE treatment. The results demonstrate that immune complexes comprised of omalizumab and allergen-specific IgE are capable of trapping allergen molecules to inhibit their cross-linking Fc□RI-bound IgE and the consequential activation of the basophils bearing Fc□RI. The results may also explain that some patients respond to omalizumab treatment after the first or second administration of omalizumab and that atopic dermatitis patients with serum IgE many times of 700IU/ml respond well with doses of omalizumab used for patients with IgE below 700IU/ml.
    The other important pharmacological mechanism investigated in this research is whether anti-IgE can modulate mIgE-expressing B cells, including IgE B lymphoblasts and memory B cells, to achieve the ultimate effects of blocking new IgE synthesis. For this goal, we have established a transgenic mouse strain “human IgE Ch2-Ch4 mouse strain”, in which the genomic segment spanning CH2 to CH4 of the mouse own □ immunoglobulin gene has been swapped by the corresponding gene segment of human □ gene by site-specific gene knock-in techniques. We have employed this mouse model to investigate the pharmacological effects of omalizumab-like, mouse anti-human IgE mAb, named ASG 16, on the modulation of IgE-committed mIgE+ B cells in vivo. The results indicate that ASG 16 can inhibit m□ RNA transcription of mIgE B cells in vivo and that ASG 16 can cause antibody-dependent cellular cytotoxicity of mIgE-expressing B cells in the presence of IgG-Fc□R-bearing accessory cells in in vitro culture..
    The human m□ chain, the heavy chain of mIgE, contains a 52-a.a. segment, referred to as C□mX, between CH4 and the C-terminal membrane-anchoring segment. C□mX, which is derived from the alternative splicing of the □ chain RNA transcript, thus provides an attractive antigenic site for the immunological targeting, either by way of a specific monoclonal antibody or a vaccine-like immunogen containing the C□mX domain, of mIgE-B cells for controlling IgE production. Because only humans and Primates species contain C□mX in their mIgE-expressing B cells, this thesis research has endeavored to construct a transgenic mouse strain to insert human C□mX in mouse mIgE. After several years of research, I have constructed “C□mX transgenic mouse strain” for evaluating the efficacy of anti-C□mX mAbs in targeting mIgE-expressing B cells.


    Abstract
    The therapeutic anti-IgE monoclonal antibodies (mAbs), which have a unique set of binding specificities to human IgE, are designed for neutralizing free IgE and inhibiting IgE production for the treatment of allergic diseases that are caused by type I hypersensitivity reaction. While anti-IgE antibody, omalizumab, has been approved in most major countries to treat patients with severe allergic asthma, the pharmacological mechanisms of anti-IgE have not been well understood. In this thesis research, we have established an in vitro re-constituted model to study the potential contribution of the rapidly accumulated IgE: anti-IgE immune complexes to the efficacious pharmacological effects of omalizumab especially in the initial few weeks after anti-IgE treatment. The results demonstrate that immune complexes comprised of omalizumab and allergen-specific IgE are capable of trapping allergen molecules to inhibit their cross-linking Fc□RI-bound IgE and the consequential activation of the basophils bearing Fc□RI. The results may also explain that some patients respond to omalizumab treatment after the first or second administration of omalizumab and that atopic dermatitis patients with serum IgE many times of 700IU/ml respond well with doses of omalizumab used for patients with IgE below 700IU/ml.
    The other important pharmacological mechanism investigated in this research is whether anti-IgE can modulate mIgE-expressing B cells, including IgE B lymphoblasts and memory B cells, to achieve the ultimate effects of blocking new IgE synthesis. For this goal, we have established a transgenic mouse strain “human IgE Ch2-Ch4 mouse strain”, in which the genomic segment spanning CH2 to CH4 of the mouse own □ immunoglobulin gene has been swapped by the corresponding gene segment of human □ gene by site-specific gene knock-in techniques. We have employed this mouse model to investigate the pharmacological effects of omalizumab-like, mouse anti-human IgE mAb, named ASG 16, on the modulation of IgE-committed mIgE+ B cells in vivo. The results indicate that ASG 16 can inhibit m□ RNA transcription of mIgE B cells in vivo and that ASG 16 can cause antibody-dependent cellular cytotoxicity of mIgE-expressing B cells in the presence of IgG-Fc□R-bearing accessory cells in in vitro culture..
    The human m□ chain, the heavy chain of mIgE, contains a 52-a.a. segment, referred to as C□mX, between CH4 and the C-terminal membrane-anchoring segment. C□mX, which is derived from the alternative splicing of the □ chain RNA transcript, thus provides an attractive antigenic site for the immunological targeting, either by way of a specific monoclonal antibody or a vaccine-like immunogen containing the C□mX domain, of mIgE-B cells for controlling IgE production. Because only humans and Primates species contain C□mX in their mIgE-expressing B cells, this thesis research has endeavored to construct a transgenic mouse strain to insert human C□mX in mouse mIgE. After several years of research, I have constructed “C□mX transgenic mouse strain” for evaluating the efficacy of anti-C□mX mAbs in targeting mIgE-expressing B cells.

    目錄 (Table and Content) 目錄 (Table and Content) 1 Chapter I 8 Accumulated immune complexes of IgE and malizumab trap allergens in an in vitro model 8 Summary 9 Background and Rationale 11 Material and methods 15 Cell culture 15 Determining size of IgE:omalizumab IC by size exclusion chromatography 15 Analysis of the binding of IgE:omalizumab IC and antigen by SDS-PAGE 16 Preparation of His-α fusion protein 16 Measuring antigen trapping by IgE:omalizumab IC with ELISA 17 Measuring antigen trapping by IgE:omalizumab IC by fluorescence flow cytometric analysis 18 Measuring activation of RBL.SX38 cells by assaying b-hexosaminidase release 19 Statistical analysis 20 Results 21 IgE and omalizumab form small soluble complexes 21 IgE:omalizumab IC are capable of binding to antigens 21 IgE:omalizumab IC inhibit antigen binding to IgE bound by α subunit of Fc□RI 21 IgE:omalizumab IC inhibit binding of fluorescence-labeled antigen to IgE-saturated basophils 22 IgE:omalizumab IC inhibited antigen-driven sensitization of RBL.SX-38 cells 22 Discussion 24 Figures and tables 28 Chapter II 36 Effects of anti-IgE antibody on mIgE+ B cells in transgenic mice expressing IgE containing human Ig epsilonCH2-CH4 36 Summary 37 Background and rationale 39 Material and methods 42 Cell culture 42 Generation of human Ig□CH2-CH4 transgenic mice 42 Administration of anti-IgE in human Ig□Ch2-Ch4 transgenic mice 44 sIgE and mIgE mRNA expression assayed by Quantitative PCR 45 Preparation and enrichment of CD11b+ macrophages 47 Preparation and enrichment of mIgE+ B cells from human Ig□CH2-CH4 transgenic mice 47 Flow cytometric analysis of Fc□R-dependent ADCC 48 ELISA for free IgE 49 ELISA for total IgE 49 Statistical analysis 50 Results 51 Construction of Ig□ Ch2-Ch4 mIgE+ transgenic mouse 51 Characterization of Ig□ Ch2-Ch4 mIgE+ transgenic mouse 51 Enrichment of human Ig□Ch2-Ch4+/+ mIgE+ B cells in vitro 51 Depletion of mIgE+ B cells by anti-IgE mAb ASG 16 in the presence of CD11b+□ macrophages. 52 Effects of anti-IgE mAb ASG 16 on the down regulation of Ig□ RNA transcript in vivo 53 Discussion 55 Figures and tables 59 Chapter III 71 Development of transgenic mouse strains expressing mIgE containing human CemX domain 71 Summary 72 Background and rationale 74 Materials and methods 77 Animal maintenance and treatment 77 Generation of C□mX-targeting BAC construct 77 Generation of C□mX transgenic mice 79 Genotyping of drug-resistant ES cells and transgenic chimera 80 Results 82 Construction of C□mx transgenic lines 82 C□mX-targeted genotyping 82 Discussion 84 Figures and tables 87 Acknowledgments 95 References 96

    References
    1. Chang, T. W. 2000. The pharmacological basis of anti-IgE therapy. Nat Biotechnol 18:157-162.
    2. Lanier, B. Q. 2003. Newer aspects in the treatment of pediatric and adult asthma: monoclonal anti-IgE. Ann Allergy Asthma Immunol 90:13-15.
    3. Casale, T. B. 2004. Omalizumab: an effective anti-IgE treatment for allergic asthma and rhinitis. Drugs Today (Barc) 40:367-376.
    4. Holgate, S. T., R. Djukanovic, T. Casale, and J. Bousquet. 2005. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy 35:408-416.
    5. Busse, W. W., M. Massanari, F. Kianifard, and G. P. Geba. 2007. Effect of omalizumab on the need for rescue systemic corticosteroid treatment in patients with moderate-to-severe persistent IgE-mediated allergic asthma: a pooled analysis. Curr Med Res Opin 23:2379-2386.
    6. Chang, T. W., P. C. Wu, C. L. Hsu, and A. F. Hung. 2007. Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol 93:63-119.
    7. MacGlashan, D. 2004. Loss of receptors and IgE in vivo during treatment with anti-IgE antibody. The Journal of allergy and clinical immunology 114:1472-1474.
    8. Chang, T. W., and Y. Y. Shiung. 2006. Anti-IgE as a mast cell-stabilizing therapeutic agent. The Journal of allergy and clinical immunology 117:1203-1212; quiz 1213.
    9. Beck, L. A., G. V. Marcotte, D. MacGlashan, A. Togias, and S. Saini. 2004. Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. The Journal of allergy and clinical immunology 114:527-530.
    10. Lin, H., K. M. Boesel, D. T. Griffith, C. Prussin, B. Foster, F. A. Romero, R. Townley, and T. B. Casale. 2004. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. The Journal of allergy and clinical immunology 113:297-302.
    11. Lane, J. E., J. M. Cheyney, T. N. Lane, D. E. Kent, and D. J. Cohen. 2006. Treatment of recalcitrant atopic dermatitis with omalizumab. J Am Acad Dermatol 54:68-72.
    12. Belloni, B., M. Ziai, A. Lim, B. Lemercier, M. Sbornik, S. Weidinger, C. Andres, C. Schnopp, J. Ring, R. Hein, M. Ollert, and M. Mempel. 2007. Low-dose anti-IgE therapy in patients with atopic eczema with high serum IgE levels. The Journal of allergy and clinical immunology 120:1223-1225.
    13. Forman, S. B., and A. B. Garrett. 2007. Success of omalizumab as monotherapy in adult atopic dermatitis: case report and discussion of the high-affinity immunoglobulin E receptor, FcepsilonRI. Cutis 80:38-40.
    14. Lim, A., S. Luderschmidt, A. Weidinger, C. Schnopp, J. Ring, R. Hein, M. Ollert, and M. Mempel. 2007. The IgE repertoire in PBMCs of atopic patients is characterized by individual rearrangements without variable region of the heavy immunoglobulin chain bias. The Journal of allergy and clinical immunology 120:696-706.
    15. Sheinkopf, L. E., A. W. Rafi, L. T. Do, R. M. Katz, and W. B. Klaustermeyer. 2008. Efficacy of omalizumab in the treatment of atopic dermatitis: a pilot study. Allergy Asthma Proc 29:530-537.
    16. Spector, S. L., and R. A. Tan. 2007. Effect of omalizumab on patients with chronic urticaria. Ann Allergy Asthma Immunol 99:190-193.
    17. van der Ent, C. K., H. Hoekstra, and G. T. Rijkers. 2007. Successful treatment of allergic bronchopulmonary aspergillosis with recombinant anti-IgE antibody. Thorax 62:276-277.
    18. Hayashi, N., Y. Tsukamoto, W. M. Sallas, and P. J. Lowe. 2007. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63:548-561.
    19. Liu, J., P. Lester, S. Builder, and S. J. Shire. 1995. Characterization of complex formation by humanized anti-IgE monoclonal antibody and monoclonal human IgE. Biochemistry 34:10474-10482.
    20. Fox, J. A., T. E. Hotaling, C. Struble, J. Ruppel, D. J. Bates, and M. B. Schoenhoff. 1996. Tissue distribution and complex formation with IgE of an anti-IgE antibody after intravenous administration in cynomolgus monkeys. J Pharmacol Exp Ther 279:1000-1008.
    21. Demeule, B., S. J. Shire, and J. Liu. 2009. A therapeutic antibody and its antigen form different complexes in serum than in phosphate-buffered saline: a study by analytical ultracentrifugation. Anal Biochem 388:279-287.
    22. Corne, J., R. Djukanovic, L. Thomas, J. Warner, L. Botta, B. Grandordy, D. Gygax, C. Heusser, F. Patalano, W. Richardson, E. Kilchherr, T. Staehelin, F. Davis, W. Gordon, L. Sun, R. Liou, G. Wang, T. W. Chang, and S. Holgate. 1997. The effect of intravenous administration of a chimeric anti-IgE antibody on serum IgE levels in atopic subjects: efficacy, safety, and pharmacokinetics. J Clin Invest 99:879-887.
    23. Milgrom, H., W. Berger, A. Nayak, N. Gupta, S. Pollard, M. McAlary, A. F. Taylor, and P. Rohane. 2001. Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). Pediatrics 108:E36.
    24. Sun, L. K., R. S. Liou, N. C. Sun, L. A. Gossett, C. Sun, F. M. Davis, D. W. MacGlashan, Jr., and T. W. Chang. 1991. Transfectomas expressing both secreted and membrane-bound forms of chimeric IgE with anti-viral specificity. J Immunol 146:199-205.
    25. Feichtner, S., D. Infuhr, G. Achatz-Straussberger, D. Schmid, A. Karnowski, M. Lamers, C. Rhyner, R. Crameri, and G. Achatz. 2008. Targeting the extracellular membrane-proximal domain of membrane-bound IgE by passive immunization blocks IgE synthesis in vivo. J Immunol 180:5499-5505.
    26. Ladics, G. S., J. H. van Bilsen, H. M. Brouwer, L. Vogel, S. Vieths, and L. M. Knippels. 2008. Assessment of three human FcepsilonRI-transfected RBL cell-lines for identifying IgE induced degranulation utilizing peanut-allergic patient sera and peanut protein extract. Regul Toxicol Pharmacol 51:288-294.
    27. Mosimann, B., V. Aubert, J. G. Frey, P. Leuenberger, and A. Pecoud. 1994. Bronchial provocation with cat allergen: correlation between the individual IgE-CRIE pattern and the occurrence of a late allergic reaction. Clin Exp Allergy 24:46-52.
    28. Corren, J., H. Fish, and J. Gumarange. 2005. Nasal response to natural cat allergen exposure is significantly greater in patients with rhinitis and asthma than in patients with rhinitis alone. The Journal of allergy and clinical immunology 115:202-203.
    29. Moneret-Vautrin, D. A., F. Rance, G. Kanny, A. Olsewski, J. L. Gueant, G. Dutau, and L. Guerin. 1998. Food allergy to peanuts in France--evaluation of 142 observations. Clin Exp Allergy 28:1113-1119.
    30. Emmett, S. E., F. J. Angus, J. S. Fry, and P. N. Lee. 1999. Perceived prevalence of peanut allergy in Great Britain and its association with other atopic conditions and with peanut allergy in other household members. Allergy 54:380-385.
    31. Leung, D. Y. 1999. Pathogenesis of atopic dermatitis. The Journal of allergy and clinical immunology 104:S99-108.
    32. van der Heijden, F. L., R. J. Joost van Neerven, M. van Katwijk, J. D. Bos, and M. L. Kapsenberg. 1993. Serum-IgE-facilitated allergen presentation in atopic disease. J Immunol 150:3643-3650.
    33. van Neerven, R. J., M. Arvidsson, H. Ipsen, S. H. Sparholt, S. Rak, and P. A. Wurtzen. 2004. A double-blind, placebo-controlled birch allergy vaccination study: inhibition of CD23-mediated serum-immunoglobulin E-facilitated allergen presentation. Clin Exp Allergy 34:420-428.
    34. Atta, A. M., C. P. Sousa, E. M. Carvalho, and M. L. Sousa-Atta. 2004. Immunoglobulin E and systemic lupus erythematosus. Braz J Med Biol Res 37:1497-1501.
    35. Marone, G., G. Spadaro, C. Palumbo, and G. Condorelli. 1999. The anti-IgE/anti-FcepsilonRIalpha autoantibody network in allergic and autoimmune diseases. Clin Exp Allergy 29:17-27.
    36. Sabroe, R. A., P. T. Seed, D. M. Francis, R. M. Barr, A. K. Black, and M. W. Greaves. 1999. Chronic idiopathic urticaria: comparison of the clinical features of patients with and without anti-FcepsilonRI or anti-IgE autoantibodies. J Am Acad Dermatol 40:443-450.
    37. Achatz, G., L. Nitschke, and M. C. Lamers. 1997. Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 276:409-411.
    38. Watanabe, M., P. K. Wallace, T. Keler, Y. M. Deo, C. Akewanlop, and D. F. Hayes. 1999. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210. Breast Cancer Res Treat 53:199-207.
    39. Oflazoglu, E., I. J. Stone, L. Brown, K. A. Gordon, N. van Rooijen, M. Jonas, C. L. Law, I. S. Grewal, and H. P. Gerber. 2009. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer 100:113-117.
    40. Hamilton, R. G., G. V. Marcotte, and S. S. Saini. 2005. Immunological methods for quantifying free and total serum IgE levels in allergy patients receiving omalizumab (Xolair) therapy. J Immunol Methods 303:81-91.
    41. Peeters, S. H., and B. G. Carter. 1981. Regulation of the IgE antibody response in mice. II. Radioresistance of established IgE antibody production. Immunology 43:25-32.
    42. Goodman, D. J., and S. Gerondakis. 1997. Simultaneous expression of germline gamma1 and epsilon immunoglobulin heavy chain transcripts in single murine splenic B-cells. Mol Immunol 34:919-927.
    43. Peng, C., F. M. Davis, L. K. Sun, R. S. Liou, Y. W. Kim, and T. W. Chang. 1992. A new isoform of human membrane-bound IgE. J Immunol 148:129-136.
    44. Batista, F. D., S. Anand, G. Presani, D. G. Efremov, and O. R. Burrone. 1996. The two membrane isoforms of human IgE assemble into functionally distinct B cell antigen receptors. J Exp Med 184:2197-2205.
    45. Kaisho, T., K. Takeda, T. Tsujimura, T. Kawai, F. Nomura, N. Terada, and S. Akira. 2001. IkappaB kinase alpha is essential for mature B cell development and function. J Exp Med 193:417-426.
    46. Terada, T., H. Kaneko, T. Fukao, H. Tashita, A. L. Li, M. Takemura, and N. Kondo. 2001. Fate of the mutated IgG2 heavy chain: lack of expression of mutated membrane-bound IgG2 on the B cell surface in selective IgG2 deficiency. Int Immunol 13:249-256.
    47. Davis, F. M., L. A. Gossett, and T. W. Chang. 1991. An epitope on membrane-bound but not secreted IgE: implications in isotype-specific regulation. Biotechnology (N Y) 9:53-56.
    48. Chen, H. Y., F. T. Liu, C. M. Hou, J. S. Huang, B. B. Sharma, and T. W. Chang. 2002. Monoclonal antibodies against the C(epsilon)mX domain of human membrane-bound IgE and their potential use for targeting IgE-expressing B cells. Int Arch Allergy Immunol 128:315-324.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE