簡易檢索 / 詳目顯示

研究生: 薛云婷
Hsueh, Yun-Ting
論文名稱: 氧電漿對氧化銦薄膜電晶體的影響
The Effect of Oxygen Plasma on the Performance of Indium Oxide Thin Film Transistors
指導教授: 吳孟奇
Wu, Meng-Chyi
朱治偉
Chu, Chih-Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 67
中文關鍵詞: 金屬氧化物氧電漿氧化銦電晶體
外文關鍵詞: metal oxide, oxygen plasma, indium oxide, transistor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜電晶體是最早被發明的場效電晶體,原本被期望可以取代真空管應用於電算機中,但是後來逐漸被性能更優越的金屬-氧化物-半導體場效電晶體取代,直到新應用的出現才又受到重視,這個新應用主要是作為液晶顯示面板中畫素的切換開關,尤其是大尺寸的顯示面板當中更顯得重要。在本論文中,探討以熱蒸鍍反應技術沈積,並以氧電漿方式氧化氧化銦薄膜,實現在二氧化矽為閘極介電層的氧化銦薄膜電晶體。比起先前用高溫回火來氧化的氧化銦,氧電漿氧化只需在室溫底下即可達到氧化效果,較不耗時,能夠簡化製程及實現可撓性軟性電子的應用。在此實驗中,我們分別改變氧電漿的功率以及氧電漿氧化的時間去探討對氧化銦電晶體電性的變化,在氧電漿功率1000瓦氧流量50sccm氧化時間為90分鐘時,其氧與銦的比例最為接近3:2即三氧化二銦,此時場效電子遷移率約為0.32cm2/Vs,而打開與關掉的電流開關比約為106,隨著氧電漿氧化時間的增加,氧化程度越深,打開的電流與關掉的電流隨之降低,臨界電壓也越往正電壓偏移,
    因此我們可以簡單的利用氧電漿去控制氧化銦薄膜電晶體的電性。


    The thin-film transistors (TFTs) is the first field-effect transistor, and it was expected to substitute for the vacuum tube applied in the computer. But the TFT was replaced gradually by the Metal-oxide-semiconductor field-effect transistor which has superior performance. The TFT was not paid much attention until the appearance of new application, which was the switch of pixels in LCDs, and it was important especially LCDs with large size. In the thesis, thin-film transistors (TFTs) of indium oxide were fabricated on SiO2 gate dielectric and using reactive thermal evaporation process of high purity oxygen then oxygen plasma treatment to oxidize the indium oxide thin film. Compares with the indium oxide which oxidizes with the high tempering annealing, the advantage of oxygen plasma oxidation just only need under the room temperature. And it can simplify the fabrication process and realize flexible electronic with various thin-film transistor application.
    In this experiment, we change the oxygen plasma power and the oxidized time to discuss the performance of the indium oxide transistors. When the condition of oxygen plasma was 1000 W, 50 sccm and oxidation time was 90 minutes, the proportion of oxygen and the indium most is close to 3:2. The field effect electronic mobility approximately is 0.32cm2/Vs, the on/off ratio of the device is 106. The electronic characteristic of indium oxide thin film transistor was found to be a strong function of the plasma treatment time and power. Therefore we may the simple use oxygen plasma control the indium oxide thin film transistor's properties.

    Chapter 1: Introduction 1-1 Introduction ……………………………………………..1 Chapter 2: Property of the Metal Oxide Thin Film Transistor 2.1 The Geometry and Operation …………….……………...7 2.2 The Parameter Extraction ……………….……………….8 Chapter 3: Experimental Detail 3.1 Reactive thermal evaporator …………………….………16 3-2 Electrical characterization ………………………………17 3-3 Structural characterization …...…………………………18 3-3.1 Atomic Force Microscopy ( AFM ) ………………………..18 3-3.2 X-ray Photoelectron Spectroscopy ( XPS ) ………………..19 3-3.3 X-ray diffraction (XRD) …………………………………...21 Chapter 4: The effect of oxygen plasma on the performance of indium oxide thin film transistors 4.1 Introduction.......................................................................31 4.2 Experiment .......................................................................34 4.3 Result and Discussion.......................................................36 4.4 Conclusion .......................................................................40 Chapter 5: Conclusion 5.1 Conclusion .......................................................................60 References References ………………………………………………….61 Figure Captions Chapter 1 Fig. 1.1 Basic TFT structure of bottom gate, top contact. Chapter 2 Fig. 2.1 Schematic representation of three different thin-film transistor structures: (a). Top-Contact, Bottom-Gate, (b) Bottom-Contact, Bottom-Gate (c).Bottom-Contact, Top-Gate. Fig. 2.2 Plots of high frequency (1 MHz) C-V characteristics measured for metal/ dielectric insulator / metal structures. Fig. 2.3 Drain-current-voltage output characteristic of a thin film transistor. Chapter 3 Fig. 3.1 (a) the reactive thermal evaporation system (b) the vacuum System Fig. 3.2 The inner structure of the chamber Fig. 3.3 The PVA Tepla plasmas system Fig. 3.4 AFM cantilever (after use) in the Scanning Electron Microscope, magnification 1,000 x (image width ~ 100 micrometers) [14]. Fig. 3.5 Concept of AFM and the optical lever: As a laser scan drags the tip over the sample, some sort of detection apparatus measures the vertical deflection of the cantilever, which indicates the local sample height. Fig. 3-6 The process called Photoemission, which is also known as photon induced electron emission. Fig.3-7 A Schematic of an X-ray powder diffractometer. Chapter 4 Fig. 4.1. (Color online) Schematic diagram of the Indium Oxide thin film transistor. Fig. 4.2 Drain current – voltage ( ID - VDS ) characteristics of Indium oxide field-effect transistors with different oxidation time: (a) 10 min, (b) 30 min, (c) 60 min, (d) 90min, (e) 120 min and (f) 180 min. Fig. 4.3 Drain current – voltage ( ID - VDS ) characteristics of indium oxide field-effect transistors with different oxygen plasma power: (a) 250 W, (b) 500 W, (c) 750 W and (d) 1000 W. Fig. 4.4 (a) Oxidation time dependence of mobilities, (b) Oxygen plasma power dependence of mobilities Fig. 4.5 (a) On current as a function of oxidation time, (b) Off current as a function of oxidation time Fig. 4.6 (a) On current as a function of oxygen plasma power, (b) Off current as a function of oxygen plasma power. Fig. 4.7 (a) Variation of threshold voltage as a function of oxygen plasma time, (b) Variation of threshold voltage as a function of oxygen plasma power. Fig. 4.8 (a) X-ray diffraction pattern of indium oxide films with different oxygen treatment time (oxygen plasma 50sccm 1000W), (b) X-ray diffraction pattern of indium oxide films with different oxygen treatment power (oxygen plasma 50sccm 90min ). Fig. 4.9 The Atomic force microscopy images for the indium oxide films with different oxygen treatment time: (a) 10 min, (b) 90 min and (c) 180 min. Fig. 4.10 The Atomic force microscopy images for the indium oxide films with different oxygen treatment power: (a) 500 W, (b) 1000 W. Fig. 4.11 XPS spectra of (a) In 3d and (b) O 1s of indium oxide films with different oxygen treatment time (oxygen plasma 50sccm 1000W). Fig. 4.12 XPS spectra of (a) In 3d and (b) O 1s of indium oxide films with different oxygen treatment time (oxygen plasma 50sccm 1000W). Fig. 4.13 XPS spectra of In 3d and O 1s of indium oxide films with different oxygen treatment time (oxygen plasma 50sccm 1000W). Inset was the Oxygen and indium atomic composition proportion. Fig. 4.14 XPS spectra of In 3d and O 1s of indium oxide films with different oxygen treatment power (oxygen plasma 50sccm 90min). Inset was the Oxygen and indium atomic composition proportion. Fig. 4.15 Transfer curve and ID1/2 versus VDS curve of Indium oxide field-effect transistors with different oxidation time: (a) 10 min, (b) 30 min, (c) 60 min, (d) 90min, (e) 120 min and (f) 180 min. Fig. 4.16 Transfer curve and ID1/2 versus VDS curve of Indium oxide field-effect transistors with different oxygen plasma power: (a) 250 W, (b) 500 W, (c) 750 W and (d) 1000 W. Fig. 4.17 (A) Transfer characteristics of Indium oxide field-effect transistors with different oxidation time: (a) 10 min, (b) 30 min, (c) 60 min, (d) 90min, (e) 120 min and (f) 180 min. (B) Transfer characteristics of Indium oxide field-effect transistors with different oxygen plasma treatment power: (a) 250 W, (b) 500 W, (c) 750 W and (d) 1000 W. Fig. 4.18 Sub-threshold slope as a function of oxidation time. Fig. 4.19 Sub-threshold slope as a function of oxygen plasma power. Table Captions Chapter 4 Table. 4.1 The Oxygen and indium atomic composition proportion. ( O2 flow 50 sccm, plasma power 1000 watts ) Table. 4.2 The Oxygen and Indium atomic composition proportion. ( O2 flow 50 sccm, oxidation time 90 miunte ) Table. 4.3 Comparison of various In2O3-Based TFTs parameters with different O2 plasma treatment time. ( O2 flow 50 sccm, oxidation power 1000 watts ) Table. 4.4 Comparison of various In2O3-Based TFTs parameters with different O2 plasma treatment power.

    [1] Snell, A. J., Mackenzie, K. D., Spear, W. E., LeComber, P. G. & Hughes, A. J. Appl. Phys. Lett. 24, 357–362 (1981)
    [2] Madelung, O. (ed.) Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000).
    [3] Ucikoga, S. MRS Bull. 27, 881–886 (2002)
    [4] R. E. Presley, D. Hong, H. Q. Chang, C. M. Hung, R. L. Hoffman, and J. F. Wager, Solid-State Electron. 50, 500 (2006).
    [5] S. Chang, Y. W. Song, S. Lee, S. Y. Lee, and B. K. Ju, Appl. Phys. Lett. 92, 192104 (2008).
    [6] B. Yaglioglu, H. Y. Yeom, and D. C. Paine, Appl. Phys. Lett. 86, 261908 (2005).
    [7] B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007).
    [8] Y. L. Wang, Appl. Phys. Lett. 90, 232103 (2007).
    [9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
    [10] T. Iwasaki, N. Itagaki, T. Den, and H. Kumomi, Appl. Phys. Lett. 90, 242114 (2007).
    [11] Dhananjay, C. W. Chu, Appl. Phys. Lett. 91, 132111 (2007).
    [12] D. Sarid, Scanning Force Microscopy, Oxford Series in Optical and Imaging Sciences, Oxford University Press, New York (1991)
    [13] V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists. (Book) (December 1999) Imperial College Press
    [14] From Wikipedia, the free encyclopedia.
    [15] Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK
    [16] Forrest S R 2004 Nature 428 911
    [17] Jan Anton Koster L, Wouter J van Strien, Waldo Beek J E and Paul Blom W M 2007 Adv. Funct. Mater. 17 1297
    [18] Lee K, Kim J Y, Park S H, Kim S H, Cho S and Heeger A J 2007 Adv. Mater. 19 2445
    [19] Singh T B, Meghdadi F, Gunes S, Marjanovic N, Horowitz G, Lang F, Bauer S and Sariciftci N S 2005 Adv. Mater. 17 2315
    [20] Hsieh H-H and Wu C-C 2006 Appl. Phys. Lett. 89 041109
    [21] Song J-I, Park J-S, Kim H, Heo Y-W, Lee J-H and Kim J-J 2007 Appl. Phys. Lett. 90 022106
    [22] Hoffman R L 2006 Solid-State Electron. 50 784
    [23] Miyasako T, Senoo M and Tokumitsu E 2005 Appl. Phys. Lett. 86 162902
    [24] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
    [25] A. Gupta, H. Cao, K. Parekh, K. V. Rao, A. R. Raju, and U. V. Waghmare, J. Appl. Phys. 101, 09N513 (2007).
    [26] K. Ito and T. Nakazawa, Surf. Sci. 86, 492 (1979).
    [27] Z. Ovadyahu, J. Phys. C 19, 5187 (1986).
    [28] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, Appl. Phys. Lett. 78, 3842 _2001.
    [29] X. Q. Meng, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z. Y. Xiao, Y. C. Liu, and X. W. Fan, Chem. Phys. Lett. 413, 450 2005.
    [30] H.-W. Ra, K. S. Choi, C. W. Ok, S. Y. Jo,1 K. H. Bai, and Y. H. Im1,” Ion bombardment effects on ZnO nanowires during plasma treatment,” Appl. Phys. Lett.93, 033112 (2008)
    [31] B. D. Ahn, H. S. Shin, H. J. Kim, J. S. Park, and J. K. Jeong, Appl. Phys. Lett. 93, 203506 (2008)
    [32] H. Kakiuchi, H. Ohmi, M. Harada, H. Watanabe, and K. Yasutake, Appl. Phys. Lett. 90, 151904 (2007)
    [33] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70 (11), 17 March 1997
    [34] Dhananjay, S. S. Cheng, C. Y. Yang, C. W. Ou, Y. C. Chuang, M. C. Wu and Chih-Wei Chu, J. Phys. D: Appl. Phys. 41 (2008) 092006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE