簡易檢索 / 詳目顯示

研究生: 羅智聘
Luo, Chih-Pin
論文名稱: 一維Poisson-Fermi模型的數值逼近及其在電雙層的應用
Numerical Approximations for One Dimensional Poisson-Fermi model and the Applications in Electric Double Layer
指導教授: 李金龍
Li, Chin-Lung
口試委員: 李俊璋
Lee, Chiun-Chang
沈俊嚴
Shen, Chun-Yen
黃皓瑋
Huang, Hao-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: 電雙層泊松-費米
外文關鍵詞: Poisson-Fermi
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poisson-Fermi理論是通過表徵電勢函數來理解雙電層(EDL)的有用工具。首先,本論文提出了線性Poisson-Fermi模型和非線性Poisson-Fermi模型。接下來,針對應用邊界條件導出一維線性Poisson-Fermi模型的解析解。此外,我們開發了有限差分方法來解決線性和非線性情形的四階Poissoin-Fermi模型。最後,我們通過模擬包含不同邊界條件和不同長度的各種電勢函數圖來歸納我們的結果。


    The Poisson-Fermi theory is an useful tool to understand the electric double layer(EDL) by characterizing the electric potential function. First, the linear Poisson-Fermi Model and the nonlinear Poisson-Fermi Model are presented in this thesis. Next, the analytic solution of the one-dimensional linear Poisson-Fermi Model is derived for applied boundary conditions. In addition, we develop finite-difference method to solve the fourth-order Poissoin-Fermi Model with linear and nonlinear cases. Finally, we conclude our results by simulating the graphs that contain the various electric potential function for different boundary conditions and different length.

    Contents 1 Introduction and Literature Review 1 2 One-Dimensional Poisson-Fermi Model 3 2.1 The Nonlinear Poisson-Fermi Model . . . . . . . . . . . . . . . . . . 3 2.2 The Linear Poisson-Fermi Model . . . . . . . . . . . . . . . . . . . 5 2.3 The exact solution of the linear potential function (x) . . . . . . . 8 3 Numerical methods for the Linear Poisson-Fermi Model 11 3.1 Finite-Di erential Method for Linear Problem Fourth-Order Boundary Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Introduction of Centered-Di erence Formula . . . . . . . . . 11 3.1.2 Boundary conditions for solving linear system . . . . . . . . 15 4 Numerical Methods for the Nonlinear Poisson-Fermi Model 20 4.1 Newton's method for Nonlinear Systems . . . . . . . . . . . . . . . 20 4.2 Finite-Di erence Method for Fourth-Order Nonlinear Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Simulations for Electrical Double Layer 25 5.1 Potential Function for Linear Poisson-Fermi Model . . . . . . . . . 25 5.2 Potential Function for Nonlinear Poisson-Fermi Model . . . . . . . . 29 6 Conclusions 34 7 References 35

    References
    [1] J.-L. Liu, \Numerical methods for the poisson{fermi equation in electrolytes,"
    Journal of Computational Physics, vol. 247, pp. 88{99, 2013.
    [2] J.-L. Liu, D. Xie, and B. Eisenberg, \Poisson-fermi formulation of nonlocal
    electrostatics in electrolyte solutions," Computational and Mathematical
    Biophysics, vol. 5, no. 1, pp. 116{124, 2017.
    [3] J.-L. Liu and B. Eisenberg, \Poisson{fermi model of single ion activities in
    aqueous solutions," Chemical Physics Letters, vol. 637, pp. 1{6, 2015.
    [4] J.-L. Liu and B. Eisenberg, \Correlated ions in a calcium channel model: a
    poisson{fermi theory," The Journal of Physical Chemistry B, vol. 117, no. 40,
    pp. 12051{12058, 2013.
    [5] J.-L. Liu and B. Eisenberg, \Poisson-nernst-planck-fermi theory for modeling
    biological ion channels," The Journal of chemical physics, vol. 141, no. 22,
    p. 12B640 1, 2014.
    [6] J.-L. Liu and B. Eisenberg, \Analytical models of calcium binding in a calcium
    channel," The Journal of chemical physics, vol. 141, no. 7, p. 08B613 1, 2014.
    [7] J.-L. Liu and B. Eisenberg, \Numerical methods for a poisson-nernst-planckfermi
    model of biological ion channels," Physical Review E, vol. 92, no. 1,
    p. 012711, 2015.
    [8] J.-L. Liu, H.-j. Hsieh, and B. Eisenberg, \Poisson{fermi modeling of the ion
    exchange mechanism of the sodium/calcium exchanger," The Journal of Phys-
    ical Chemistry B, vol. 120, no. 10, pp. 2658{2669, 2016.
    [9] C.-L. Li and J.-L. Liu., \A generalized debye{huckel equation from poissonfermi
    theory.," 2018 preprint.
    [10] C.-L. Li and J.-L. Liu., \A generalized debye{huckel theory of electrolyte
    solutions based on poisson-fermi equation," AIP Adveances 9, 015214(2019),
    2018 preprint.
    [11] B. E. Chin-Lung Li, Ren-Chuen Chen and J.-L. Liu, \An electirc potential
    formula of damped oscillations in electric double layers," 2019 preprint.
    [12] R. L.Burden and J. D. Faires, \Numerical analysis," Ninth Edition.

    QR CODE