研究生: |
黃恩琪 En-Chi Huang |
---|---|
論文名稱: |
葡聚醣接枝聚己內酯之兩性高分子及其奈米粒子應用於包覆藥物的研究 Nanoparticles of Amphiphilic Copolymer Dextran-grafted-poly(caprolactone) And Their Applications in Durg Delivery System |
指導教授: | 朱一民 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 奈米粒子 、藥物控制釋放 、紫杉醇 、薑黃素 、體外釋放 |
外文關鍵詞: | amphiphilic copolymer, nanoparticles, drug delivery system, paclitaxel, curcumin, in-vitro release |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用生物相容性佳的Dextran作為親水性材料,接枝疏水性poly(caprolactone),合成出兩性高分子Dex-g-PCL。此接枝狀兩性高分子在水中會自組裝形成奈米粒子,臨界聚集濃度(CAC)值約為1 ppm,且在水相溶液中形成粒徑約140 nm的奈米粒子,儲存在37℃環境可以維持至少六週的粒徑穩定。
此奈米粒子能夠包覆疏水性抗癌藥物-紫杉醇以及薑黃素。包覆紫杉醇時,依給藥比例不同,包覆效率最高可達61.9%,並且維持粒徑在140 nm;包覆薑黃素效率約為45%,粒徑略增加至240 nm,兩者皆能維持穩定粒徑達一個月以上。以透析方法作釋放實驗時,兩種藥物皆呈現兩階段釋放趨勢。
以MTT進行細胞毒殺實驗時,發現無包藥的奈米粒子在培養一至兩天內,對人類纖維母細胞HS68與子宮頸癌細胞HeLa皆沒有明顯毒性。而包覆藥物的奈米粒子對HeLa細胞進行毒殺實驗,發現以奈米粒子包覆薑黃素可以在2 ppm時殺死50%的細胞,證明藥物本身仍具有活性;就紫杉醇而言,以此奈米粒子包覆紫杉醇僅需0.0005 ppm的藥物就能殺死60%癌細胞,且能夠避免使用蓖麻油做為溶劑引發的缺點,表示此奈米粒子配方非常有潛力。
Hydrophobic segments of poly(caprolactone), PCL, were synthesized from ring-opening polymerization of ε-caprolactone and then grafted on hydrophilic dextran molecules to form amphiphilic copolymer Dextran-grafted-poly(caprolactone). The copolymers Dex-g-PCL exhibited critical aggregation concentration (CAC) at 1µg/mL in water, and self-assembled into nanoparticles of 140 nm in diameter, mainly via hydrophilic-hydrophobic interactions of polymer chains in aqueous solutions.
Water-insoluble curcumin and anticancer agent paclitaxel were incorporated into these nanoparticles with encapsulation efficiency up to 45% and 61.9%, depending on the loading ratio. The in-vitro release profiles showed biphasic patterns, while sizes remained stable in 37°C for more than 1 month. Void nanoparticles showed low cytotoxicity toward human fibroblasts HS-68 and HeLa cell line; however, paclitaxel- and curcumin-loaded nanoparticles showed IC50 value about 0.0005 and 2 ppm, respectively toward HeLa cell line. High biocompatibility of nanoparticles and effects of encapsulated anticancer agents were verified.
Composed of amphiphilic copolymer Dex-g-PCL, the nanoparticles showed great potential in the application of sustainable drug release.
1. Biomaterials TCUABf. Definition of the word Biomaterial. Paper presented at: The 6th Annnal Intermalional Biomaterial Symposium, 1974.
2. Ghosh S. Recent research and development in synthetic polymer-based drug delivery systems. Journal of Chemical Research. 2004;4:241~246.
3. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chemical Reviews. Nov 1999;99(11):3181-3198.
4. Nagahama K, Mori Y, Ohya Y, Ouchi T. Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation. Biomacromolecules. Jul 2007;8(7):2135-2141.
5. Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science. Aug 2002;27(6):1123-1163.
6. Chan CK, Chu IM. Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol). Biomaterials. Jan 2003;24(1):47-54.
7. Chan CK, Chu IM. Stability and depolymerization of poly(sebacic anhydride) under high moisture environment. Journal of Applied Polymer Science. Aug 2003;89(5):1423-1429.
8. Hans M, Shimoni K, Danino D, Siegel SJ, Lowman A. Synthesis and Characterization of mPEG-PLA Prodrug Micelles. Biomacromolecules. 2005;6(5):2708~2717.
9. Zhang Y, Chu C-C. Biodegradable dextran–polylactide hydrogel networks: Their swelling, morphology and the controlled release of indomethacin. Journal of Biomedical Material Research. 2002;59:318~328.
10. Jeong Y-I, Choi K-C, Song C-E. Doxorubicin release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. Archives of Pharmacal Research. 2006;29:712~719.
11. Barbault-Foucher S, Gref R, Russo P, Guechot J, Bochot A. Design of poly-epsilon-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. Journal of Controlled Release. Oct 2002;83(3):365-375.
12. Lemarchand C, Gref R, Passirani C, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27:108~118.
13. Rodrigues JS, Santos-Magalhaes NS, Coelho LCBB, Couvreur P, Ponchel G, Gref R. Novel core(polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins. Journal of Controlled Release. 2003;92:103~112.
14. Ouchi T, Saito T, Kontani T, Ohya Y. Encapsulation and/or Release Behavior of Bovine Serum Albumin within and from Polylactide-Grafted Dextran Microspheres. Macromolecular Bioscience. 2004;4:458~463.
15. Lu D, Liu Z, Zhang M, Wang X, Liu Z. Dextran-grafted-PNIPAAm as an artificial chaperone for protein refolding. Biochemical Engineering Journal. 2006;27:336~343.
16. Shi R, Burt HM. Amphiphilic dextran-graft-poly(ε-caprolactone) films for the controlled release of paclitaxel. International Journal of Pharmaceutics. 2004;271:167~179.
17. Lee WC, Li YC, Chu IM. Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromolecular Bioscience. Oct 2006;6(10):846-854.
18. K.C. RB, Bhattarai SR, Aryal S, Khil MS, Dharmaraj N, Kimd HY. Novel amphiphilic triblock copolymer based on PPDO, PCL, and PEG: Synthesis, characterization, and aqueous dispersion. Colloids and Surfaces A. 2007;292:69~78.
19. 林千靖. 光交聯聚乙二醇-聚乳酸二團聯共聚物之合成及其奈米水膠之研究: 化學工程研究所, 清華大學; 2007.
20. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B-Biointerfaces. Nov 1999;16(1-4):3-27.
21. Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Advanced Drug Delivery Reviews. Apr 2004;56(7):1023-1050.
22. Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. Journal of Controlled Release. 2005;109:158~168.
23. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials. 2007;28:1730~1740.
24. Gu M-q, Yuan X-b, Kang C-s, et al. Surface biofunctionalization of PLA nanoparticles through amphiphilic polysaccharide coating and ligand coupling: Evaluation of biofunctionalization and drug releasing behavior. Carbonhydrate Polymera. 2007;67:417~426.
25. Chan CK, Chu IM. In vitro release of incorporated model compounds in poly(sebacic anhydride-co-ethylene glycol). European Polymer Journal. Jun 2005;41(6):1403-1409.
26. Ydens I, Rutot D, Degee P, Six J-L, Dellacherie E, Dubois P. Controlled Synthesis of Poly(ε-caprolactone)-Grafted Dextran Copolymers as Potential Environmentally Friendly Surfactants. Macromolecules. 2000;33:6713~6721.
27. Nouvel C, Ydens I, Degee P, Dubois P, Dellacherie E, Six J-L. Partial or total silylation of dextran with hexamethyldisilazane. Polymer. 2002;43:1735~1743.
28. Ouchi T, Kontani T, Ohya Y. Modification of polylactide upon physical properties by solution-cast blends from polylactide and polylactide-grafted dextran. Polymer. 2003;44:3927~3933.
29. Gref R, Rodrigues J, Couvreur P. Polysaccharides Grafted with Polyesters: Novel Amphiphilic Copolymers for Biomedical Applications. Macromolecules. 2002;35:9861~9867.
30. vanDijkWolthuis WNE, Tsang SKY, KettenesvandenBosch JJ, Hennink WE. A new class of polymerizable dextrans with hydrolyzable groups: hydroxyethyl methacrylated dextran with and without oligolactate spacer. Polymer. Dec 1997;38(25):6235-6242.
31. Patrick GL. An Introduction to Medicinal Chemistry. 3 ed: OXFORD; 2005.
32. Nornoo AO, Chow DSL. Cremophor-free intravenous microemulsions for paclitaxel II. Stability, in vitro release and pharmacokinetics. International Journal of Pharmaceutics. Feb 2008;349(1-2):117-123.
33. Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) copolymer as a carrier for paclitaxel Journal of Controlled Release. 2003;89:437~446.
34. Bae KH, Lee Y, Park TG. Oil-Encapsulating PEO-PPO-PEO/PEG Shell Cross-Linked Nanocapsules for Target-Specific Delivery of Paclitaxel. Biomacromolecules. 2007;8:650~656.
35. Service DoDI. Lycopene and Turmeric: Anti-Cancer Therapy Alternatives? World of Drug Information. Vol 17; 2006.
36. Leu T-H, Maa M-C. The Molecular Mechanisms for the Antitumorigenic Effect of Curcumin. Current Medical Chemistry - Anti-Cancer Agents. 2002;2:357-370.
37. Huang MT, Smart RC, Wong CQ, Conney AH. Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-Acetate. Cancer Research. Nov 1988;48(21):5941-5946.
38. Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin - In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. Sep 2005;104(6):1322-1331.
39. Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clinical Cancer Research. Oct 2005;11(20):7490-7498.
40. Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D'Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Letters. Jun 2005;224(1):53-65.
41. 楊國義. 薑黃素的藥物動力學研究及薑黃的相關成分分析: 傳統醫藥學研究所, 國立陽明大學; 2005.
42. Lemarchand C, Gref R, Lesieur S, et al. Physico-chemical characterization of polysaccharide-coated nanoparticles. Journal of Controlled Release. 2005;108:97~111.
43. Groot CJD, Luyn MJAV, Dijk-Wolthuis WNEV, et al. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials. 2001;22:1197~1203.
44. JUNG S-W, JEONG Y-I, KIM Y-H. Drug release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. Journal of Microencapsulation. 2005;22(8):901~911.
45. Elhasi S, Astaneh R, Lavasanifar A. Solubilization of an amphiphilic drug by poly(ethylene oxide)-block-poly(ester) micelles. European Journal of Pharmaceutics and Biopharmaceutics. 2007;65:406~413.
46. 鶴田禎二, 川上雄資. 高分子設計.
47. Zhao CL, Winnik MA, Riess G, Croucher MD. Fluorescence Probe Techniques Used to Study Micelle Formation in Water-Soluble Block Copolymers. Langmuir. Feb 1990;6(2):514-516.
48. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release. Jul 2002;82(1):105-114.