簡易檢索 / 詳目顯示

研究生: 謝閔修
Hsieh, Min-Hsiu
論文名稱: 利用化學法誘變並篩選雨生紅球藻突變株應用於天然蝦紅素的量產
Chemical Mutagenesis and Screening of Haematococcus pluvialis for Natural Astaxanthin Production
指導教授: 黎耀基
Lai, Yiu-Kay
口試委員: 李文權
郭俊賢
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 91
中文關鍵詞: 蝦紅素雨生紅球藻甲基磺酸乙酯隨機突變細胞壁染色
外文關鍵詞: Haematococcus pluvialis, Ethyl methanesulfonate (EMS), Random mutation, Calcofluor white staining
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝦紅素為一種橘紅色的類胡蘿蔔素,被廣泛應用在飼料添加、著色劑、保健食品、化妝品產業中。其結構能提供電子給自由基或是吸引未配對的電子來達到去除自由基的作用,進而減緩因自由基產生所引起的氧化反應或是各種相關疾病。
    目前蝦紅素的主要來源為:化學合成、酵母菌(Phaffia rhodozyma),以及雨生紅球藻,但相對前兩者,微藻所生產的天然蝦紅素只佔了一小部分。化學合成及酵母菌發酵的蝦紅素大部分用於飼料添加以及著色劑,而隨著攝取天然食品的需求,以及為避免化學合成類胡蘿蔔素的高成本,微藻所生產的天然蝦紅素的需求日益漸高,再加上,雨生紅球藻被視為目前能累積最多蝦紅素的微藻類,故其已廣泛被研究,以用來作為天然蝦紅素的生產來源。然而,有別於酵母菌發酵,微藻養殖與色素萃取耗費相對較高的成本。如何降低養殖成本以及萃取成本成為微藻產業的主要課題。本篇研究目的主要在於篩選適合應於工業化量產的藻種,高蝦紅素含量、薄細胞壁的藻種,皆為此篇研究所關注的目標。
    此篇研究蒐集二十一株來自不同國家藻種中心的雨生紅球藻,進行第一次液體培養的篩選,再利用甲基磺酸乙酯作為致變劑,使篩選出的雨生紅球藻進行隨機突變,並利用除草劑或蝦紅素合成的抑制劑篩選出十五株突變株,進行第二次液體培養的篩選。另外,利用calcofluor white staining細胞壁染色的方式,間接判別細胞壁的厚度差異。以等量細胞進行染色之後利用Victor 2偵測螢光強度,再依細胞大小計算出細胞壁單位面積所發出的螢光強度,作為厚度的參考依據。
    經第一階段篩選後,我們選擇4株野生株進行突變,並篩選出11個突變株進行培養。實驗結果發現,雨生紅球藻細胞大小與蝦紅素含量以及蝦紅素濃度呈正相關。經14天培養後,我們得到No.13 mutant#18的蝦紅素含量相較野生株成長了25%。經28天培養後,No.19 mutant#2和mutant#3的蝦紅素含量分別為2.98%和2.53%,約兩倍於No.19野生株 (1.71%)。另外,No.10 mutamt#2和mutant#3經35天培養後,蝦紅素含量分別為4.05%和3.81%,與其他突變珠與野生株相比,含有相對較高的含量。然而,相較於第一階段篩選,No.18進行第二階段篩選時,獲得較少細胞濃度以及生物量,造成其蝦紅素含量遠低於其他藻種。
    在螢光染色方面,細胞大小與單位面積細胞壁所發出的螢光強度呈負相關。No.10 mutamt#2、mutant#3、No.19 mutant#2、mutant#3此四株突變株的細胞壁單位面積所含的螢光強度皆低於野生株,推測其細胞壁厚度較薄。利用顯微鏡觀察No.10 mutant#2與mutant#3時,也出現許多細胞破掉並釋出色素的現象。此四株突變株的蝦紅素累積含量或乾重比隨培養時間延長而增加,相對於野生株及已發表的藻種在第21天已趨於飽和。若以發表在文獻 (Jian Li, et al 2011) 相同的理想培養系統及條件,No.10 mutant#2之蝦紅素乾重比分別為2.93% (21天)、3.51% (28天)、4.05% (35天),依不同長度時間的培養,其乾重能降低約17%~62%的生產成本。


    Astaxanthin, 3, 3’-dihydroxy-b, b-carotene-4, 4’-dione is a red-orange carotenoid pigment which is widely-applied to aquaculture, poultry feeds, nutraceutical market and cosmetics market. Astaxanthin consists of conjugated double bonds to provide its red color and strong antioxidative ability by donating the electrons to scavenge free radicals.
    Recently, Haematococcus pluvialis, Phaffia yeast, and chemical synthesis are major sources of astaxanthin in commercial applications. However, natural astaxanthin from H. pluvialis only occupies a small part of total sources. The needs for natural feeds and high cost of synthetic astaxanthin have raised the demand of natural astaxanthin from microalgae. Also, Haematococcus pluvialis is a well-known microalga accumulating a richer amount of astaxanthin than the other microalgae. In commercial production of microalgae, how to reduce the cost of cultivation and product extraction are two well-concerned problems. This study was aimed at screening the most suitable strains applying to commercial production, such as high astaxanthin content, high astaxanthin productivity or weak cell wall of cysts which is easily extracted at harvest.
    In this study, we used ethyl methanesulfonate (EMS) to carry out mutagenesis. Twenty-one wild-type strains were collected from many collection centers located in many countries. After random mutation, we screened the potential mutants by using five selection compounds which are herbicides or inhibitors in astaxanthin biosynthesis pathway. These potential mutants were cultivated with Rudic’s medium under continuous blue LED light (55 μEm-2s-1) at 20~25°C. We monitored the microalgae growth by measuring absorption wavelength of 674 nm which is usually estimating the amounts of microalgae. After harvest, we extracted the pigments from H. pluvialis and analyzed astaxanthin content to screen high productivity mutants. Moreover, we used calcofluor white to stain the cell wall of H. pluvialis. We assumed that thinner cell wall would present low fluorescent intensity than thicker one after calcoflour white staining with the same cell density.
    After random mutation, we got 11 mutants to cultivate and compare with each other in liquid culture. According to statistics, the positive correlation between cell size and astaxanthin content/ concentration was presented. In comparison of mutants, the astaxanthin content of No.13 mutant#18 was 25% higher than wild-type after 14-days cultivation. Also, the astaxanthin contents of No.19 mutant#2 and mutant#3 were 2.98% and 2.53% respectively. They were higher than the astaxanthin content of No.19 wild-type (1.71%) after 28-days cultivation. Moreover, the astaxanthin contents of No.10 mutant#2 and mutant#3 were 4.05% and 3.81% respectively. They were higher than the astaxanthin content of No.10 wild-type (2.11%) after 35-days cultivation. However, No.18 strains got lower cell density and biomass compared with No.18 wild-type in first screening and resulted in lower astaxanthin content and concentration.
    In calcofluor white staining assay, No.19 mutant#2, mutant#3, No.10 mutant#2 and mutant#3 got lower fluorescent intensity on unit sphere surface area of cell wall. It indicated that the cell wall of these strains were weaker than others. But No.19 mutant#2 had high viscosity and easily attached to the surface of flask. It might cause some problems on harvest and extraction.
    We assume that the mutant strain No.10 mutant#2 was cultivated with the ideal culture systems and conditions published in review paper in 2011 by Jian Li. The astaxanthin content of No.10 mutant#2 increased as time went by while the strain published only got 2.5% astaxanthin content after 14-days cultivation. If we extend the cultivation duration, No.10 muntant#2 was a more suitable strain to apply to commercial production. It can reduce about 17% to 62% cost of production depending on different cultivation periods.

    Chapter 1 Introduction 1 1.1 Astaxanthin 1 1.2 Haematococcus pluvialis 4 1.3 The aim 10 Chapter 2 Materials and Methods 11 2.1 Chemicals and reagents 11 2.2 Sources of algal strains 12 2.3 Algal culture methods 12 2.4 Astaxanthin concentration analysis 13 2.5 Mutagenesis of H. pluvialis wild-type strains 15 2.6 Cryopreservation test of H. pluvialis 16 2.7 Cell wall staining of H. pluvialis 16 2.8 Diameter measurement of H. pluvialis 17 Chapter 3 Results 18 3.1 Four H. pluvialis wild-type strains were selected for mutagenesis 18 3.2 Eleven mutants of H. pluvialis were selected for further experiment 19 3.3 Comparison of H. pluvialis strains in liquid culture 20 3.4 Cell wall staining assay showed that the negative correlation between cell size and thickness of cell wall 24 3.5 No.10 mutant#3 and No.19 mutant#3 got higher astaxanthin productivity and thinner cell wall 25 3.6 HPLC analysis of extract from H. pluvialis 26 3.7 10% methanol was a better cryopreservative agent for cryopreservation of H. pluvialis 27 Chapter 4 Discussion 28 4.1 The effect of different strains and cell stages on optical density measurement of pigments 28 4.2 The improvements of extraction method 29 4.3 The effects of crude extract from H. pluvialis and saponification on quantification of astaxanthin 30 4.4 The effects of EMS and different selection compounds on H. pluvialis 31 4.5 Astaxanthin production from different mutants of H. pluvialis 32 4.6 The effect of different cell stages on calcofluor white staining 33 4.7 Cells at different stages had different tolerance to cryopreservative agents 34 4.8 The effects of light intensity and wavelength on H. pluvialis cultivation 34 4.9 The cost of production can be reduced 17% to 62% depending on different cultivation periods 36 Reference 37

    1. Johnson, E.A. and G.H. An, Astaxanthin from Microbial Sources. Critical Reviews in Biotechnology, 1991. 11(4): p. 297-326.
    2. Lorenz, R.T., A technical review of Haematococcus algae. Naturose Technical Bulletin, 1999. 60(9).
    3. Lorenz, R.T. and G.R. Cysewski, Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000. 18(4): p. 160-167.
    4. Yang, Y., B. Kim, and J.-Y. Lee, Astaxanthin structure, metabolism, and health benefits. J. Hum. Nutr. Food Sci, 2013. 1(1003): p. 1-1003.
    5. Higuera-Ciapara, I., L. Felix-Valenzuela, and F.M. Goycoolea, Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr, 2006. 46(2): p. 185-96.
    6. Miki, W., Biological Functions and Activities of Animal Carotenoids. Pure and Applied Chemistry, 1991. 63(1): p. 141-146.
    7. Guerin, M., M.E. Huntley, and M. Olaizola, Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 2003. 21(5): p. 210-216.
    8. Chen, Y., et al., Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnology Letters, 2003. 25(7): p. 527-529.
    9. Ma, R.Y.N. and F. Chen, Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochemistry, 2001. 36(12): p. 1175-1179.
    10. Zhang, D.H. and Y.K. Lee, Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp strain MA-1. Applied Microbiology and Biotechnology, 2001. 55(5): p. 537-540.
    11. Orosa, M., et al., Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology, 2000. 12(3-5): p. 553-556.
    12. Ip, P.F. and F. Chen, Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 2005. 40(2): p. 733-738.
    13. Borowitzka, M.A., J.M. Huisman, and A. Osborn, Culture of the Astaxanthin-Producing Green-Alga Haematococcus-Pluvialis .1. Effects of Nutrients on Growth and Cell Type. Journal of Applied Phycology, 1991. 3(4): p. 295-304.
    14. Kakizono, T., M. Kobayashi, and S. Nagai, Effect of Carbon Nitrogen Ratio on Encystment Accompanied with Astaxanthin Formation in a Green-Alga, Haematococcus-Pluvialis. Journal of Fermentation and Bioengineering, 1992. 74(6): p. 403-405.
    15. Johnson, E.A. and M.J. Lewis, Astaxanthin Formation by the Yeast Phaffia-Rhodozyma. Journal of General Microbiology, 1979. 115(Nov): p. 173-183.
    16. Kesava, S.S., et al., An industrial medium for improved production of carotenoids from a mutant strain of Phaffia rhodozyma. Bioprocess Engineering, 1998. 19(3): p. 165-170.
    17. Pashkow, F.J., D.G. Watumull, and C.L. Campbell, Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 2008. 101(10A): p. 58D-68D.
    18. Ambati, R.R., et al., Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs, 2014. 12(1): p. 128-52.
    19. Capelli, B., Astaxanthin: Natural Astaxanthin: King of the Carotenoids2007.
    20. Bagchi, D., Oxygen free radical scavenging abilities of vitamins c, e, β-carotene, pycnogenol, grape seed proanthocyanidin extract and astaxanthins in vitro. Pharmacy Sciences Creighton University School of Health Sciences, 2001.
    21. Cysewski, G.R. and R.T. Lorenz, 14 Industrial Production of Microalgal Cell-mass and Secondary Products–Species of High Potential. Handbook of microalgal culture: biotechnology and applied phycology, 2004: p. 281.
    22. Shimidzu, N., M. Goto, and W. Miki, Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science (Japan).
    23. Kidd, P., Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev, 2011. 16(4): p. 355-64.
    24. Yuan, J.P., et al., Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res, 2011. 55(1): p. 150-65.
    25. Barros, M.P., et al., Combined astaxanthin and fish oil supplementation improves glutathione-based redox balance in rat plasma and neutrophils. Chem Biol Interact, 2012. 197(1): p. 58-67.
    26. Rao, A.R., et al., Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem, 2013. 61(16): p. 3842-51.
    27. Ranga Rao, A., et al., In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass—A repeated dose study. Food Research International, 2013. 54(1): p. 711-717.
    28. Rao, A.R., A.H. Reddy, and S.M. Aradhya, Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts. Current Trends in Biotechnology and Pharmacy, 2010. 4(3): p. 809-819.
    29. Parker, R.S., Absorption, metabolism, and transport of carotenoids. The FASEB Journal, 1996. 10(5): p. 542-551.
    30. Naguib, Y.M., Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem, 2000. 48(4): p. 1150-4.
    31. Hussein, G., et al., Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod, 2006. 69(3): p. 443-9.
    32. Liu, X. and T. Osawa, Cis astaxanthin and especially 9- cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all- trans isomer. Biochem Biophys Res Commun, 2007. 357(1): p. 187-193.
    33. Kamath, B.S., et al., Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur J Pharmacol, 2008. 590(1-3): p. 387-95.
    34. Ranga Rao, A., et al., Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem, 2010. 58(15): p. 8553-8559.
    35. Augusti, P.R., et al., Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits. J Clin Biochem Nutr, 2012. 51(1): p. 42-9.
    36. Dominguez-Bocanegra, A.R., Production, extraction, and quantification of astaxanthin by Xanthophyllomyces dendrorhous or Haematococcus pluvialis: standardized techniques. Methods Mol Biol, 2012. 898: p. 171-82.
    37. Fiedler, D., et al., Algae biocers: astaxanthin formation in sol–gel immobilised living microalgae. Journal of Materials Chemistry, 2007. 17(3): p. 261-266.
    38. Kobayashi, M., et al., Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Applied Microbiology and Biotechnology, 1997. 48(3): p. 351-356.
    39. Elliot, A.M., Morphology and life history of Haematococcus pluvialis. Arch. Protistenk, 1934. 82: p. 250-272.
    40. Liu, J., et al., Studies of cell cycle in Haematococcus pluvialis. Oceanologia et Limnologia Sinica, 1999. 31(2): p. 145-150.
    41. Li, H.B. and F. Chen, Preparative isolation and purification of astaxanthin from the microalga Chlorococcum sp. by high-speed counter-current chromatography. Journal of Chromatography A, 2001. 925(1-2): p. 133-7.
    42. Ma, R.Y.-N. and F. Chen, Enhanced production of free trans- astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochemistry, 2001. 36(12): p. 1175-1179.
    43. Zhang, D.H. and Y.K. Lee, Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1. Applied Microbiology and Biotechnology, 2001. 55(5): p. 537-540.
    44. Ip, P.-F. and F. Chen, Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 2005. 40(2): p. 733-738.
    45. Grung, M., et al., Algal carotenoids 51. Secondary Carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 3′ S)-astaxanthin esters. Journal of Applied Phycology, 1992. 4(2): p. 165-171.
    46. Kobayashi, M., T. Kakizono, and S. Nagai, Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and Environmental Microbiology, 1993. 59(3): p. 867-873.
    47. Dragoş, N., et al., Astaxanthin production from a new strain of Haematococcus pluvialis grown in batch culture. Ann RSCB, 2010: p. 353-361.
    48. Yong, Y.Y.R. and Y.K. Lee, Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia, 1991. 30(3): p. 257-261.
    49. Hagen, C., W. Braune, and F. Greulich, Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales) IV. Protection from photodynamic damage. Journal of Photochemistry and Photobiology B: Biology, 1993. 20(2): p. 153-160.
    50. Kakizono, T., M. Kobayashi, and S. Nagai, Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 1992. 74(6): p. 403-405.
    51. Chien, Y. Biological effects of astaxanthin in shrimp, a review. 1996.
    52. Renstrøm, B., et al., Optical purity of (3S, 3' S)-astaxanthin from Haematococcus pluvialis. Phytochemistry, 1981. 20(11): p. 2561-2564.
    53. Lorenz, R.T. and G.R. Cysewski, Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000. 18(4): p. 160-167.
    54. Goodwin, T.W., The biochemistry of the carotenoids. Vol. 2. 1984: Springer.
    55. Davies, B.H., Carotenoid metabolism in animals: a biochemist's view. Pure and Applied Chemistry, 1985. 57(5): p. 679-684.
    56. You, T. and S.M. Barnett, Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical engineering journal, 2004. 19(3): p. 251-258.
    57. Jeon, Y.-C., C.-W. Cho, and Y.-S. Yun, Measurement of microalgal photosynthetic activity depending on light intensity and quality. Biochemical engineering journal, 2005. 27(2): p. 127-131.
    58. Lababpour, A., et al., Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis. Journal of bioscience and bioengineering, 2004. 98(6): p. 452-456.
    59. Kim, Z.H., H.-S. Lee, and C.-G. Lee, Red and blue photons can enhance the production of astaxanthin from Haematococcus pluvialis. Algae, 2009. 24(2): p. 121-127.
    60. Kobayashi, M., et al., Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 1992. 74(1): p. 61-63.
    61. Katsuda, T., et al., Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme and microbial technology, 2004. 35(1): p. 81-86.
    62. Lababpour, A., et al., Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. Journal of bioscience and bioengineering, 2005. 100(3): p. 339-342.
    63. Katsuda, T., et al., Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. Journal of bioscience and bioengineering, 2006. 102(5): p. 442-446.
    64. Harker, M., A.J. Tsavalos, and A.J. Young, Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresource technology, 1996. 55(3): p. 207-214.
    65. Fan, L., A. Vonshak, and S. Boussiba, EFFECT OF TEMPERATURE AND IRRADIANCE ON GROWTH OF HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) 1. Journal of Phycology, 1994. 30(5): p. 829-833.
    66. Johnson, E.A. and G.-H. An, Astaxanthin from microbial sources. Critical Reviews in Biotechnology, 1991. 11(4): p. 297-326.
    67. Boussiba, S. and A. Vonshak, Astaxanthin accumulation in the green alga Haematococcus pluvialis1. Plant and cell Physiology, 1991. 32(7): p. 1077-1082.
    68. Fabregas, J., et al., Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol, 2000. 53(5): p. 530-5.
    69. Hata, N., et al., Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology, 2001. 13(5): p. 395-402.
    70. Fabregas, J., et al., Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol, 2001. 89(1): p. 65-71.
    71. Imamoglu, E., F.V. Sukan, and M.C. Dalay, Effect of different culture media and light intensities on growth of Haematococcus pluvialis. International journal of natural and engineering sciences, 2007. 1(3): p. 5-9.
    72. Hong, D.D., et al., Choosing optimal medium for cultivation of rich-Astaxanthin green microalga Haematococcus pluvialis. Journal of Biology, 2012. 32(2): p. 43-53.
    73. Dalay, M.C., E. Imamoglu, and Z. Demirel, Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis. J Microbiol Biotechnol, 2007. 17(3): p. 393-7.
    74. Andersen, R.A., Algal culturing techniques2005: Academic press.
    75. Tocquin, P., A. Fratamico, and F. Franck, Screening for a low-cost Haematococcus pluvialis medium reveals an unexpected impact of a low N/P ratio on vegetative growth. Journal of Applied Phycology, 2012. 24(3): p. 365-373.
    76. Goodwin, T.W. and M. Jamikorn, Studies in carotenogenesis. 11. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochemical Journal, 1954. 57(3): p. 376.
    77. Bar, E., et al., Pigment and Structural Changes in Chlorella zofingiensis upon Light and Nitrogen Stress. Journal of plant physiology, 1995. 146(4): p. 527-534.
    78. Harker, M., A.J. Tsavalos, and A.J. Young, Use of response surface methodology to optimise carotenogenesis in the microalga, Haematococcus pluvialis. Journal of Applied Phycology, 1995. 7(4): p. 399-406.
    79. Cifuentes, A.S., et al., Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 2003. 36(3-4): p. 343-357.
    80. Borowitzka, M.A. and L.J. Borowitzka, Micro-algal biotechnology1988: Cambridge University Press.
    81. Borowitzka, M.A., J.M. Huisman, and A. Osborn, Culture of the astaxanthin-producing green algaHaematococcus pluvialis 1. Effects of nutrients on growth and cell type. Journal of Applied Phycology, 1991. 3(4): p. 295-304.
    82. Lee, Y.K. and S.Y. Ding, CELL CYCLE AND ACCUMULATION OF ASTAXANTHIN IN HAEMATOCOCCUS LACUSTRIS (CHLOROPHYTA) 1. Journal of Phycology, 1994. 30(3): p. 445-449.
    83. Wen, Z.-Y. and F. Chen, Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology advances, 2003. 21(4): p. 273-294 .
    84. Devgoswami, C.R., et al., Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African Journal of Biotechnology, 2013. 10(61): p. 13128-13138.
    85. Kang, C.D., et al., Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Applied Microbiology and Biotechnology, 2005. 68(2): p. 237-241.
    86. Ranga Rao, A., et al., Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. Journal of agricultural and food chemistry, 2010. 58(15): p. 8553-8559.
    87. Gomez, P.I., et al., From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants, 2013. 5: p. plt026.
    88. Li, J., et al., An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology advances, 2011. 29(6): p. 568-574.
    89. Chen, M., et al., Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 2011. 102(2): p. 1649-1655.
    90. Das, P., et al., Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 2011. 102(4): p. 3883-3887.
    91. Sarada, R., et al., An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of agricultural and food chemistry, 2006. 54(20): p. 7585-7588 .
    92. Yuan, J.-P. and F. Chen, Chromatographic separation and purification of trans-astaxanthin from the extracts of Haematococcus pluvialis. Journal of agricultural and food chemistry, 1998. 46(8): p. 3371-3375.
    93. Chumpolkulwong, N., et al., Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis. Biotechnology letters, 1997. 19(3): p. 299-302.
    94. Bartels, P.G. and C.W. Watson, Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Science, 1978: p. 198-203.
    95. Fong, F. and J.A. Schiff, Blue-light-induced absorbance changes associated with carotenoids in Euglena. Planta, 1979. 146(2): p. 119-127.
    96. Ruther, A., et al., Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Applied microbiology and biotechnology, 1997. 48(2): p. 162-167.
    97. Ben-Amotz, A., A. Shaish, and M. Avron, The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresource Technology, 1991. 38(2): p. 233-235.
    98. Fazeli, M.R., et al., Nicotine inhibition of lycopene cyclase enhances accumulation of carotenoid intermediates by Dunaliella salina CCAP 19/18. European Journal of Phycology, 2009. 44(2): p. 215-220.
    99. Fan, L., et al., The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine. Plant and cell physiology, 1995. 36(8): p. 1519-1524
    100. Lewis, M.J., et al., Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with β-ionone. Applied and environmental microbiology, 1990. 56(9): p. 2944-2945.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE