研究生: |
林孟凱 Lin, Meng Kai |
---|---|
論文名稱: |
有機分子於金屬薄膜上之物理與化學吸附 Physisorption and chemisorption of organic molecules on metal thin films |
指導教授: |
唐述中
Tang, Shu Jung |
口試委員: |
蘇雲良
鄭弘泰 鄭澄懋 皮敦文 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 光電子能譜 、有機 、金屬 、薄膜 |
外文關鍵詞: | photoemission, organic, metal, thin film |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文中探討有機分子與二維金屬薄膜介面的作用以檢視量子效應的影響。並運用角解析光電子能譜作為主要研究工具,掃瞄樣品的電子結構。
TTC沈積於銀薄膜上的系統,主要用來探討微弱介面作用的影響。而從實驗結果中,我們可以藉由銀薄膜電子結構在TTC沈積後的變化萃取介面特性。TTC分子的沈積,改變了真空-銀介面的相位移,此結果導致了量子井態的能量變化。量子井態能量隨著銀薄膜厚度的變化,直接顯現了量子效應影響,而我們可以藉由此能量的變化,萃取單層TTC分子的介電特性。
依循著TTC實驗的方法,我們研究了CuPc沈積於銀薄膜上的化學吸附系統。實驗指出能隙態的能量與銀薄膜厚度密切相關,此結果是由於銀薄膜中的量子井態仲介了鍺基底的作用至吸附於銀表面的有機分子而造成。從此研究中,我們藉由改變銀薄膜的厚度控制能隙態的能量位置,成功調控CuPc-銀介面的能階並列特性。此結果證實,若將塊材的金屬基底取代為平整的薄膜,二維系統中的量子井態不只可以作為探測介面效應的工具,也可以作為改變介面電子結構的工具。
極性分子ClAlPc沈積於銀薄膜上的系統是用以檢驗分子的排列對於有機-金屬介面的影響。藉由調控分子的蒸鍍速率或是退火的方式,我們可以獲得Cl-向下或是Cl-向上的兩種沈積模式。而這兩種沈積模式造成了介面能階並列的不同,並產生了0.3 eV的能量差。除此之外,藉由比較實驗與真實模型的計算結果,我們證明了兩個不同的沈積模式各自對應到了相應的載子轉移路徑,而此效應是控制有機-金屬介面能階並列的重要關鍵。
This thesis investigates the interaction between the two-dimensional metal thin film and the adsorbed organic molecules to examine the various effects on the properties of organic thin film such as quantum size effect, deposition rate, and post annealing. The main experimental tool is angle-resolved photoelectron spectroscopy to map the electronic structures of the sample.
Tetratetracontance (TTC) on Ag film is prepared to study the physisorption, and the interfacial properties such as dielectric constant of 1 monolayer TTC. The adsorption of TTC molecules changes the phase shift at the vacuum-Ag interface, resulting in the energy shift of the quantum-well states of the Ag film. The Ag thickness-dependent energy shift of quantum-well states directly reveals the influence of the quantum size effect, and helps the derivation of a model to also extract the dielectric properties of monolayer TTC.
Chemisorption of CuPc on Ag film is studied also using Ag quantum well stat for probing. The thickness-dependent energy position of the gap state is explained by the mediation of the interaction from the bulk Ge to the top CuPc layer though the Ag quantum-well states. Consequently, tuning energy level alignment at the CuPc-Ag interface could be fulfilled by changing the thickness of Ag film. This work demonstrates that when the bulk metal crystal is replaced by a uniform metal thin film, the two-dimensional quantum-well state could modify the interfacial electronic structures, which have no counterparts at the organic-bulk crystal interface.
Polar organic molecule, ClAlPc, on Ag film is examined to realize the effects that determine the adsorption configuration in the context of chemisorption. We find the deposition rate and the post annealing process lead two different molecular configurations, Cl-down or Cl-up, respectively. These two different configurations render the interfacial energy level alignment to differ for about 0.3 eV. Moreover, both experimental results and calculations based on realistic model of ClAlPc on Ag(111) suggest that two different charge-transfer channels corresponding to the two configurations are the key physical mechanism for the different behaviors of the two adsorption configurations.
Ch1:
1. N. Koch, N. Ueno, A. T. S. Wee, The Molecule-Metal Interface, 1st edition
(WILEY-VCH Verlag GmbH & Co. KGaA 2013).
2. R. A. Street, M. Schoendorf, A. Roy, and J. H. Lee, Phys. Rev. B 81, 205307
(2010).
3. M. Chakaroun, B. Lucas, B. Ratier, M. Aldissi, Energy Procedia 31, 102 (2012).
4. J. H. Lee, C. C. Liao, P. J. Hu, Y. Chang, Synt. Met. 144, 279 (2004).
5. Y. Gao, L. Yan, Chem. Phys. Lett. 380, 451 (2003).
6. Y. L. Huang, E. Wruss, D. A. Egger, S. Kera, N. Ueno, W. A. Saidi, T. Bucko, A. T. S. Wee, and E. Zojer, Molecules 19, 2969 (2014).
7. M. K. Lin, Y. Nakayama, C. H. Chen, C. Y. Wang, H. –T. Jeng, T. W. Pi, H. Ishii,
and S. –J. Tang, Nat Commun 4, 2925 (2013).
8. J. I. Martínez, E. Abad, J. I. Beltrán, F. Flores, and J. Ortega, J. Chem. Phys 139,
214706 (2013).
9. T. Andreev, I. Barke, and H. Hövel, Phys. Rev. B 70, 205426 (2004).
10. F. Forster, S. Hüfner, and F. Reinert, J. Phys. Chem. B 108, 14692 (2004).
11. F. Forster, A. Bendounan, J. Ziroff, and F. Reinert, Surf. Sci. 600, 3870 (2006).
12. C. H. Schwalb, S. Sachs, M. Marks, A. Sch¨oll, F. Reinert, E. Umbach, and U.
Höfer, Phys. Rev. Lett. 101, 146801 (2008).
13. G. Neuhold, and Karsten Horn, Phys. Rev. Lett. 78, 1327 (1997).
14. A. Lindgren, and L. Walldén, Solid State Commun. 28, 283 (1978).
15. K. Kanai, Y. Ouchi, and K. Seki, Thin Solid Films 517, 3276 (2009).
16. N. V. Smith. Phys. Rev. B 32, 3549 (1985).
17. S. –J. Tang, L. Basile, T. Miller, and T. –C. Chiang, Phys. Rev. Lett. 93, 216804
(2004).
18. S. –J. Tang, W. K. Chang, Y. M. Chiu, H. Y. Chen, C. M. Cheng, K. D. Tsuei, T.
Miller, and T. –C. Chiang, Phys. Rev. B 78, 245407 (2008).
19. S. –J. Tang, T. Miller, and T. –C. Chiang, Phys. Rev. Lett. 96, 036802 (2006).
20. S. –J. Tang, Y. –R. Lee, S. –L. Chang, T. Miller, and T.-C. Chiang, Phys. Rev. Lett.
96, 216803 (2006).
21. H. Fukagawa, H. Yamane, S. Kera, K. K. Okudarura, and N. Ueno, Phys. Rev. B
73, 041302 (2006).
22. B. Stadtmüller, I. Kröger, F. Reinert, and C. Kumpf, Phys. Rev. B 83, 085416
(2011).
23. I. Kröger, B. Stadtmüller, C. Stadler, J. Ziroff, M. Kochler, A. Stahl, F. Pollinger, T. L. Lee, J. Zegenhagen, F. Reinert, and C. Kumpf, New J. Phys. 12, 083038
(2010).
24. P. W. Anderson, Phys. Rev. 109, 1492 (1957).
25. D. M. Newns, Phys. Rev. 178, 1123 (1969).
Ch2:
1. A. Damascelli, Physica Scripta. T109, 61 (2004).
2. S. Hüfner, Very High Resolution Photoelectron Spectroscopy, 1st edition (Springer, Berlin Heidelberg 2007).
3. S. Hüfner, Photoelectron Spectroscopy, Principles and Applications, 3rd edition
(Springer, Berlin Heidelberg New York, 2003).
4. R. Schlaff, Calibration of Photoemission Spectra and Work Function
Determination.
5. H. Wiedemann, Synchrotron Radiation, 1st edition (Springer, Berlin Heidelberg
New York, 2003)
6. D. H. Tomboulian, and P. L Hartman, Phys. Rev. 102, 1423 (1956).
7. Obtained from the official website of NSRRC.
8. SCIENTA R3000 User Manual.
9. H. Lüth, Solid Surfaces, Interfaces and Thin Films, 4th edition (Springer, Berlin
Heidelberg New York, 2001).
10. S. Ogawa, Y. Kimura, H. Ishii, and M. Niwano, Jpn. J. Appl. Phys. 42, 1275
(2003).
11. W. Brütting, and C. Adachi, Physics of Organic Semiconductors, 2nd edition
(WILEY-VCH Verlag GmbH & Co. KGaA 2012)
Ch3:
1. H. Lüth, Solid Surfaces, Interfaces and Thin Films, 4th edition (Springer, Berlin
Heidelberg New York, 2001).
2. A. Zangwill, Physics at Surfaces, 1st edition (Cambridge University Press, New
York, 1989) .
3. E. Zarembe, and W. Kohn, Phys. Rev. B 15, 1769 (1977).
4. W. R. Salaneck, K. Seki, A. Kahn, and J. J. Pireaux, Conjugated Polymer and
Molecular Interfaces, 1st edition (Marcel Dekker, Inc., New York, 2002).
5. T. Andreev, I. Barke, and H. Hövel, Phys. Rev. B 70, 205426 (2004).
6. F. Forster, S. Hüfner, and F. Reinert, J. Phys. Chem. B 180, 14692 (2004).
7. F. Forster, A. Bendounan, J. Ziroff, and F. Reinert, Surf. Sci. 600, 3870 (2006).
8. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
9. D. Yoshimura, H. Ishii, Y. Ouchi, E. Ito, T. Miyamae, S. Hasegawa, K. K.
Okudaira, N. Ueno, K. Seki, Phys. Rev. B 60, 9046 (1999).
10. M. Yamamoto, Y. Sakurai, Y. Hosoi, H. Ishii, E. Ito, K. Kajukawa, Y. Ouchi, and
K. Seki, Surf. Sci. 427, 388 (1999).
11. W. Liu, J. Carrasco, B. Santra, A. Michaelides, M. Scheffler, and A. Tkatchenko,
Phys. Rev. B 86, 245405 (2012).
12. Z. X. Xie, X. Xu, J. Tang, and B. W. Mao, J. Phys. Chem. B 104, 11719 (2000).
13. E. Ito, T. Arai, M. Hara, and H. Noh, Bull. Korean Chem. Soc. 30, 1309 (2009).
14. M. Karus, S. Richler, A. Opitz, W. Brütting, S. Haas, T. Hasegawa, A. Hinderhofer, and Frank Schreiber, J. Appl. Phys. 107, 094503 (2010).
15. D. I. Kim, T. Q. Trung, B. U. Hwang, J. S. Kim, S, Jeon, J. Bae, J. J. Park, and N.
E. Lee, Sci. Rep. 5, 12705 (2015).
16. H. Fukagawa, H. Yamane, S. Kera, K. K. Okudaira, and N. Ueno, Phys. Rev. B 73, 041302 (2006).
17. M. Pivetta, F. Patthey, W. D. Schneider, and B. Delley, Phys. Rev. B 65, 045417 (2002).
18. J. K. Nørskov, Rep. Prog. Phys. 53,1253 (1990).
19. M. Jung, U. Baston, G. Schnitzler, M. Kaiser, J. Papst, T. Porwol, H. J. Freund,
and E. Umbach, J. Mol. Struct. 293, 239 (1993).
20. H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, IEEE J. Sel.
Top. Quant. Electron. 4, 24 (1998).
21. E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, Chem. Phys. Lett. 287,
137 (1998).
22. T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, J. Phys. Chem. C 117, 1013
(2013).
23. Y. Zou, L. Kilian, A. Schöll, T. Schmidt, R. Fink, and E. Umbach, Surf. Sci. 600, 1240 (2006).
24. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105, 1103 (2005).
25. I. Kröger, B. Stadtmüller, C. Stadler, J. Ziroff, M. Kochler, A. Stahl, F. Pollinger, T. L. Lee, J. Zegenhagen, F. Reinert, and C. Kumpf, New J. Phys. 12, 083038 (2010).
26. B. Stadtmüller, I. Kröger, F. Reinert, and C. Kumpf, Phys. Rev. B 83, 085416
(2011).
27. J. Ziroff, F. Forster, A. Schöll, P. Puschnig, and F. Reinert, Phys. Rev. Lett. 104,
233004 (2010).
28. Y. Gao, L. Yan, Chem. Phys. Lett. 380, 451 (2003).
29. Y. L. Huang, E. Wruss, D. A. Egger, S. Kera, N. Ueno, W. A. Saidi, T. Bucko, A. T. S. Wee, and E. Zojer, Molecules 19, 2969 (2014).
30. C. Stadler, S. Hansen, I. Kröger, C. Kumpf, and E. Umbach, Nat. Phys. 5, 153
(2009).
Ch4:
1. R. Shankar, Principles of quantum mechanics, 2nd edition
2. T. Andreev, I. Barke, and H. Hövel, Phys. Rev. B 70, 205426 (2004).
3. S. –J. Tang, W. K. Chang, Y. M. Chiu, H. Y. Chen, C. M. Cheng, K. D. Tsuei, T.
Miller, and T. –C. Chang, Phys. Rev. B 78, 245407 (2008).
4. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
5. D. Yoshimura, H. Ishii, Y. Ouchi, E. Ito, T. Miyamae, S. Hasegawa, K. K.
Okudaira, N. Ueno, and K. Seki, Phys. Rev. B 60, 9046 (1999).
6. S. J. Tang, L. Basile, T. Miller, and T. C. Chiang, Phys. Rev. Lett. 93, 216804
(2004);
7. M. Kraus, S. Richler, A. Opitz,W. Brütting, S. Haas, T. Hasegawa, A.
Hinderhofer, and F. Schreiber, J. Appl. Phys. 107, 094503 (2010).
8. H. Fukagawa, H. Yamane, S. Kera, K. K. Okudaira, and N. Ueno, Phys. Rev. B 73, 041302 (2006).
9. C. W. Bunn, and E. R. Howells, Nature 174, 549 (1954).
10. T. Miyamae, S. Hasegawa, D. Yoshimura, H. Ishii, N. Ueno, K. Seki, J. Chem.
Phys. 112, 3333 (2000).
Ch5:
1. J. H. Lee, C. C. Liao, P. J. Hu, and Y. Chang, Synth. Met. 144, 279 (2004).
2. M. D. Jiang, P. Y. Lee, T. L. Chiu, H. C. Lin, and J. H. Lee, Synth. Met. 161, 1828
(2011).
3. X. Z. Zhu, C. H. Gao, M. F. Xu, W. Gu, X. B. Shi, Y. L. Lei, Z. K. Wang, and L. S.
Liao, Synth. Met. 162, 2212 (2012).
4. M. Chakaroun, B. Lucas, B. Ratier, M. Aldissi, Energy Procedia 31, 102 (2012).
5. R. A. Street, M. Schoendorf, A. Roy, and J. H. Lee, Phys. Rev. B 81, 205307
(2010).
6. S. Braum, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
7. I. Kröger, B. Stadtmüller, C. Stadler, J. Ziroff, M. Kochler, A. Stahl, F. Pollinger, T. L. Lee, J. Zegenhagen, F. Reinert, and C. Kumpf, New J. Phys. 12, 083038 (2010).
8. B. Stadtmüller, I. Kröger, F. Reinert, and C. Kumpf, Phys. Rev. B 83, 085416 (2011).
9. D. A. Luh, C. M. Cheng, K. D. Tsuei, and J. M. Tang, Phys. Rev. B 78, 233406 (2008).
10. S. –J. Tang, L. Basile, T. Miller, and T. –C. Chiang, Phys. Rev. Lett. 93, 216804
(2004).
11. S. –J. Tang, W. K. Change, Y. M. Chiu, H. Y. Chen, C. M. Cheng, K. D. Tsuei, T.
Miller, and T. –C. Chiang, Phys. Rev. B 78, 245407 (2008).
12. T. J. Z. Stock, and J. Nogami, Surf. Sci. 637, 132 (2015).
13. T. Miller, A. Samsavar, G. E. Franklin, and T. –C. Chiang, Phys. Rev. Lett. 61,
1404 (1988).
14. F. Forster, E. Gergert, A. Nuber, H. Bentmann, L. Huang, X. G. Gong, Z. Zhang,
and F. Reinert, Phys. Rev. B 84, 075412 (2011).
15. P. W. Anderson, Phys. Rev. 109, 1492 (1957).
16. D. M. Newnst, Phys. Rev. 178, 1123 (1969).
17. I. G. Hill, A. Kahn, Z. G. Soos, R. A. Pascal, Chem. Phys. Lett. 327, 181 (2000).
Ch6:
1. T. Hosokai, H. Machida, A. Gerlach, S. Kera, F. Schreiber, and N. Ueno, Phys.
Rev. B 83, 195310 (2011).
2. H. Fukagawa, H. Yamane, S. Kera, K. K. Okudarira, and N. Ueno, Phys. Rev. B
73, 041302 (2006).
3. S. Kera, Y. Yabuuchi, H. Yamane, H. Setoyama, K. K. Okudaria, A. Kahn, and N.
Ueno, Phys. Rev. B 70, 085304 (2004).
4. S. Kera, K. K. Okudaria, Y. Harada, and N. Ueno, Jpn. J. Appl. Phys. 40, 783
(2001).
5. H. Fukagawa, S. Hosoumi, H. Yamane, S. Kera, and N. Ueno, Phys. Rev. B 83,
085304 (2011).
6. S. Kera, H. Yamane, H. Honda, H. Fukagawa, K. K. Okudaira, and N. Ueno, Surf.
Sci. 566, 571 (2004).
7. T. Pasinszki, M. Aoki, S. Masuda, Y. Harada, N. Ueno, Hajime, and Y. Maruyama,
J. Phys. Chem. 99, 12858 (1995).
8. T. Niu, J. Zhang, and W. Chen, J. Phys. Chem. C 118, 4151 (2014).
9. Y. L. Huang, W. Chen, F. Bussolotti, T. C. Niu, A. T. S. Wee, N. Ueno, and S.
Kera,, Phys. Rev. B 87, 085205 (2013).
10. A. Gerlach, T. Hosokai, S. Duhm, S. Kera, O. T. Hofmann, E. Zojer, J.
Zegenhagen, and F. Schreiber, Phys. Rev. Lett. 106, 156102 (2011).
11. T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, J. Phys. Chem. C 117, 1013
(2013).
12. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.
A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.
Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.,
Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.
N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,
M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V.
Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
13. V. Chauhan, R. Hatton, P. Sullivan, T. Jone, S. W. Cho, L. Piper, A. deMasi, and K. Smith, J. Mater. Chem. 20, 1173 (2010).
14. J. J. De Yoreo, P. Vekilov, Rev. Mineral Geochem. 54, 57 (2003).