簡易檢索 / 詳目顯示

研究生: 羅元宏
Lo, Yuan-Hung
論文名稱: 鐵鈀銦及鐵鈀金鐵磁性形狀記憶合金均質化處理之研究
Homogenization Study on FePd29.5In0.5 and FePd30-xAux Ferromagnetic Shape Memory Alloy Ribbons
指導教授: 胡塵滌
Hu, Chen-Ti
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 92
中文關鍵詞: 鐵磁性形狀記憶薄帶均質化
外文關鍵詞: Ferromagnetic, Shape Memory, Ribbon, Homogenization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中探討冷滾壓以及均質化處理對於快速凝固旋淬法製備的 FePd29.5In0.5 and FePd30-xAux (x = 1, 5 and 7) 鐵磁性形狀記憶合金薄帶在相變化溫度、磁性質、磁致伸縮與形狀記憶效應的影響。
    初製成的FePd29.5In0.5試片中含有少量bct相,相同試片經過均質化處理之後則完全為bct相,而初製成以及均質化後的FePd30-xAux (x = 1, 5 and 7)試片則沒有觀察到bct相。 初製成的FePd30-xAux (x = 1, 5 and 7)薄帶Af溫度隨著Au的含量上升,而均質化後的薄帶Ms溫度隨著Au的含量下降。 在室溫下FePd23Au7為母相。
    初製成FePd29.5In0.5試片比均質化處理的試片有較高的室溫飽和磁化量,但是矯頑磁場較小。 而FePd30-xAux (x = 1, 5 and 7)試片不論是初製成或者是均質化後的室溫飽和磁化量都隨著Au的比例而下降。 磁致伸縮值方面,初製成FePd29.5In0.5薄帶在與9 kOe的磁場方向呈80度夾角時有375ppm,稍小於均質化薄帶在與9 kOe的磁場方向呈70度夾角時的415ppm。 均質化的FePd30-xAux在9 kOe的場下對於X = 1, 5 和 7 時則表現出1240 ppm @ 90°, 1330 ppm @ 80° and 760 ppm @ 90°的值,其中FePd23Au7在測量時為母相。
    由於均質化處理後的FePd29.5In0.5試片呈現完全bct相,因此並不具有任何形狀記憶的效果,而初製成的薄帶則在經過五十次熱循環後還保有35%的雙向形狀回復率。。添加金的試片中,無論是初製成或者是均質化後的試片都表現出雙向形狀記憶效應,在經過五十次熱循環後前者最高有58% (FePd23Au7)的雙向形狀回復率而後者最高只達到10%。


    In this study the effect of cold rolling and homogenization on the transformation temperature, magnetization, magnetostriction and shape memory effect for melt-spun FePd29.5In0.5 and FePd30-xAux (x = 1, 5 and 7) alloys were investigated.
    The homogenized FePd29.5In0.5 ribbon exhibited complete bct phase while only little bct was observed in the as-spin ribbon, on the other hand, no bct phase was observed in both as-spun and homogenized FePd30-xAux ribbons (x = 1, 5 and 7). The Ms of homogenized FePd30-xAux was found to decrease with Au content, while the Af of as-spun FePd30-xAux increased with Au content. At room temperature FePd23Au7 exhibited complete parent phase.
    As-spun FePd29.5In0.5 ribbon exhibited higher room temperature saturated magnetization than that of homogenized sample, while the coercive field of the latter is lower. For as-spun and homogenized FePd30-xAux ribbon the room temperature saturated magnetization decreased with increased Au content. The magnetostriction of as-spun FePd29.5In0.5 reached maximum at 375 ppm under 9 kOe at 80° with respect to the field, and that of homogenized sample reached maximum at 415 ppm at 70° under 9 kOe. Homogenized FePd30-xAux exhibited higher magnetostriction under 9 KOe field, and the values are 1240 ppm at 90°, 1330 ppm at 80° and 760 ppm at 90° for X = 1, 5 and 7 respectively.
    As-spun FePd29.5In0.5 exhibited Two-way shape memory effect with recovery ratio up to 35% after 50 thermal cycles, while the homogenized ribbon showed no shape memory effect due to the BCT phase. For homogenized FePd30-xAux the recovery ratio was only up to 10% after 50 thermal cycles while that of as-spun ribbon exhibited much higher recovery ratio up to 58% for X=7.

    Abstract I 摘要 II Content index III Figure Index V Table Index IX 1. Preface 1 1.1. Introduction 1 1.2. Ferromagnetic Shape Memory Alloys 2 1.2.1. Shape Memory Effect 2 1.2.2. Magnetostriction [19-20] 5 1.2.3. Ferromagnetic Shape Memory Effect 6 1.2.4. Applications of FeSMA 8 1.3. Literature research on Fe-Pd alloy systems 9 1.3.1. Fabrication of Fe-Pd alloy 9 1.3.2. Phase transformation Fe-Pd Shape Memory Alloy 10 1.3.3. Shape Memory Effect 13 1.3.4. Ferromagnetic Shape Memory Effect 14 1.3.5. The effect of tertiary element 16 1.4. Motivation 16 2. Experimental 29 2.1. Apparatus 29 2.1.1. Vacuum Arc Melting system 29 2.1.2. Single Roller Melt-Spinning device 29 2.1.3. Inductively Coupled Plasma-Atomic Emission Spectrometry 29 2.1.4. X-Ray Diffractometer 30 2.1.5. Vibrating-Sample Magnetometer 31 2.1.6. Strain gauge assisted VSM 32 2.1.7. Superconducting Quantum Interference Devices 33 2.1.8. Others 34 2.2. Sample preparation 34 2.2.1. Ingot composition and preparation 34 2.2.2. Melt-spinning 34 2.2.3. Homogenization treatment 35 2.3. Sample Analysis 35 2.3.1. Composition 35 2.3.2. Microstructure 35 2.3.3. Magnetic Property Measurement 36 2.3.4. Shape Memory Effect 36 3. Results and discussion 44 3.1. Properties of As-spun and Homogenized Fe70Pd29.5In0.5 44 3.1.1. Composition Analysis 44 3.1.2. Microstructure Analysis 44 3.1.3. Magnetic Properties 46 3.1.4. Shape Memory Effect 49 3.2. Properties of As-spun and Homogenized Fe70Pd30-xAux 50 3.2.1. Composition Analysis 50 3.2.2. Microstructure Analysis 50 3.2.3. Magnetic Properties 55 3.2.4. Shape Memory Effect 58 4. Conclusion 81 4.1. Effect of homogenization on Fe70Pd29.5In0.5 81 4.2. Effect of homogenization on Fe70Pd30-xAux 82 5. References 83 Appendix I : TEM analysis of FePd25Au5-Hom Martensite Phase 87

    1. A. Ölander, “An electrochemical investigation of solid cadmium - gold alloys”, J. Amer. Chem. Soc. 54 (1932), p.p. 3819-3833
    2. A. B. Greninger and V. G. Mooradian, “Strain Transformation in Metastable Copper-Zinc and Beta Copper- Tin Alloys", Trans. AIME 128 (1938), p.p. 337-368
    3. G. V. Kurdjumov and L. G. Khandros, “First reports of the thermoelastic behavior of the martensitic phase of Au-Cd alloys”, Doklady Akad. Nauk S.S.S.R., 56 (1949), p.p. 221-213
    4. L. C. Chang and T. A. Read, “Plastic Deformation and Diffusionless Phase Changes in Metals. The Gold-Cadmium Beta Phase”, Trans. A.I.M.E. 189 (1951), p.p. 47-52
    5. C. M. Wayman, “Some Applications of Shape-memory Alloys”, Journal of Metals, 32 (1980), p.p. 129-137
    6. K. Otsuka and K. Shimuzu, “Development of Shape Memory Alloys”, ISIJ International. Rev., 29 (1989), p.p. 353-377
    7. L. M. Schetky, “Shape memory alloys”, Scientific American, 241 (1979), p.p. 74-82
    8. V. V. Kokorin, and M. Wuttig, “Magnetostriction in ferromagnetic shape memory alloys”, Journal of Magnetic and Magnetic Materials, 234 (2001), p.p. 25-30
    9. K. Ullakko, J. k. Huang, C. Kantner, C. O’Handley and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals”, Applied Physics Letter 69 (1996), p.p. 1966-1968
    10. T. Kakeshita, K. Shimizu, S. Funada and M. Date, “,Magnetic Field-induced Martensitic Transformations in Disordered and Ordered Fe-Pd Alloys”, Transactions of the JAPAN Institute of Metals 25 (1984), p.p. 837-844
    11. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase” , Appl. Phys. Lett. 80 (2002) 10, p.p. 1746–1748
    12. T. Fukuda, T. Sakamoto, T. Kakeshita, T. Takeuchi and K. Kishio, “Rearrangement of Martensite Variants in Iron-Based Ferromagnetic Shape Memory Alloys under Magnetic Field”, Mat. Trans. 45 (2004) p.p. 188–192.
    13. L. Delaet, R. V. Krishnan, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 1. Structural and Microstructural Changes Associated with Transformations“, Journal of Materials Science 9 (1974), p. p. 1521-1535
    14. R. V. Krishnan, L. Delaet, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 2. Macroscopic Mechanical-Behavior”, Journal of Materials Science 9 (1974), p. p. 1536-1544
    15. H. Warlimont, L. Delaet, R. V. Krishnan and H. Tas, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 3. Thermodynamics and Kinetics”, Journal of Materials Science 9 (1974), p. p. 1545-1555
    16. T. Tadaki, K. Otsuka and K. Shimizu, “Shape Memory Alloys”, Annual Review of Materials Science, 18 (1988), p. p. 25-45
    17. D. P. Dunne and C. M. Wayman, “Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2.Crystallography and General Features”, Metallurgical Transactions 4 (1973), p. p. 147-152
    18. T. A. Schroder and C. M. Wayman, “2-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals “, Scripta Metallurgica 11 (1977), p. p. 225-230
    19. B. D. Cullity, “Introduction to Magnetic Materials”, Ch. 8, 1972, p. p. 248-285
    20. D. Gignoux and M. Schlenker, “MagnetismⅠ Fundamentals”, Ch. 3 and 12 (2002), p. p. 79-103 and p. p. 351-396
    21. A. E. Clark. Ferromagnetic Materials, vol 1, ed Wolfhart, E.P. (Amsterdam: North-Holland) p. p. 531
    22. D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, “Magnetostriction and Shape Memory Properties of Fe-Pd Alloys with Co and Pt Additions”, Smart Mater. Struct., 14 (2005), p.p. 261-265
    23. Y. Furuya, N. W. Hagood, H. Kimura and T. Watanabe, “Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at.% Pd alloy”, Materials Transactions, JIM (Japan), 39(1998) (12), p.p. 1248-1254
    24. J. Cui, T. W. Shield and R.D. James, “Phase Transformation and Magnetic Anisotropy of An Iron-Palladium Ferromagnetic Shape-Memory Alloy“, Acta Materialia 52(2004), p.p. 35-47
    25. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, and B. Ouladdiaf, “Magnetic Superelasticity and inverse MCE in Ni-Mn-In”, Phys. Rev. B 75(2007), 104414
    26. K. Ullakko, J.K. Huang, V.V. Kokorin and R.C. O’Handley, “Magnetically controlled shape memory effect in Ni2MnGa intermetallics”, Scripta Metall. 36(1997) (10), p.p. 1133–1138
    27. K. Ullakko, “Magnetically controlled shape memory alloys: A new class of actuator materials”J. Mater. Eng. Perform. 5 (1996), p.p. 405-409
    28. 金重勳主編, “磁性技術手冊”,第31章 (2002), p.p. 409-419
    29. K. Tanaka, T. Ichitsubo and M. Koiwa, “Effect of External Fields on Ordering of FePd “Material Science and Engineering A 312 (2001), p.p.118-127
    30. P.R. Aitchison, J.N. Chapman, V. Gehanno, I.S. Weir, M.R. Scheinfein, S. McVitie and A. Marty, “High Resolution Measurement and Modeling of Magnetic Domain Structures in Epitaxial FePd (001) L1(0) Films With Perpendicular magnetization”, Journal of Magnetism and Magnetic Materials 223 (2001), p.p.138-146
    31. T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi and F. Abe, “Theoretical Investigation of L1(0)-Disorder Phase Equilibria in Fe-Pd Alloy System “, Journal of Alloys and Compounds 317-318 (2001), p.p.13-18
    32. L.S. Wang, Z.H. Fan and D.E. Laughlin, “Trace Analysis For Magnetic Domain Images of L1(0) Polytwinned Structures “, Scripta Materialia 47( 2002), p.p.781-785
    33. T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys”, MRS Bulletin 27 (2002), p.p.105-109
    34. D. Vokoun and C. T. Hu, “Two-way shape memory effect in Fe-28.8 at. % Pd melt-spun ribbons”, Scr. Mater. 47/7 (2002), p.p. 453–460
    35. S. Inoue, K. Inoue, K. Koterazawa and K. Mizuuchi, “Shape Memory Behavior of Fe-Pd Alloy Thin Films Prepared by DC Magnetron Sputtering “, Materials Science and Engineering A 339 (2003), p.p.29-34
    36. S. Inoue, K. Inoue, S. Fujita and K. Koterazawa, “Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering “, Materials Transactions 44 (2003), p.p.298-304
    37. F. Wang, S. Doi, K. Hosoiri, H. Yoshida, T. Kuzushima, M. Sasadaira and T. Watanabe, “Nanostructured Fe-Pd thin films for thermoelastic shape memory alloys--electrochemical preparation and characterization”, Electrochimica Acta 51 (2006) 20, p.p. 4250-4254
    38. M. Sugiyama, R. Oshima and F. E. Fujita, “Martensitic-Transformation in the Fe-Pd Alloy System“, Transactions of the JAPAN Institute of Metals 25 (1984), p.p. 585-592
    39. R. Hultgren and C. A. Zapffe, “Gamma to Alpha Transformation in Iron Alloyed with Palladium”,Nature 142 (1938), p.p. 395-396
    40. T. Sohmura, R. Oshima and F. E. Fujita, “Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy“, Scripta Metallurgica 14 (1980), p.p. 855-856
    41. R. Oshima, “Successive Martensitic Transformations in Fe-Pd Alloys“, Scripta Metallurgica 15 (1981), p.p. 829-833
    42. M. Sugiyama, R. Oshima and F. E. Fujita, “Mechanism of FCC-FCT Thermoelastic Martensite-Transformation in Fe-Pd Alloys“, Transactions of the JAPAN Institute of Metals 27 (1986), p.p. 719-730
    43. H. Kato, Y. Liang and M. Taya, “Stress-induced FCC/FCT Phase Transformation in Fe-Pd Alloy“, Scripta Materialia 46 (2002), p.p. 471-475
    44. J. J. Felten, T. J. Kinkus, A. C. E. Reid, J. B. Cohen, and G. B. Olson, “Solid-Solution Structure and the Weakly First-Order Displacive Transformation in Fe-Pd Alloys “, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 28 (1997), p.p. 527-536
    45. Y. Murakami, D. Shindo, T. Sakamoto, T. Fukuda, T. Kakeshita, “Magnetic domain structure in the presence of very thin martensite plates: Electron holography study on a thin-foil Fe–31.2 at. %Pd alloy”, Acta Materialia 54 (2006), p.p. 1233–1239
    46. Y. Kishi, Z. Yajima, T. Okazaki, Y. Furuya And M. Wuttig, “Magnetic Properties and Microstructures of Rapidly Solidified FePd Alloy Ribbons”, Advances in Science and Technology 59 (2008), p.p. 24-29
    47. H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya and T. Mori, “Martensite Structure in Polycrystalline Fe-Pd“, Materials Science and Engineering A 332(2002), p.p. 134-139
    48. J. Cui and R. D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory“, IEEE Transactions on Magnetics 37 (2001), p.p. 2675-2677
    49. Y. Liang, T. Wada, H. Kato, T. Tagawa, M. Taya and T. Mori, “Straining of a polycrystal of Fe-Pd with martensite structure by uniaxial loading“, Materials Science and Engineering A 338 (2002), P.P. 89-96
    50. M. Matsui, T. Shimizu, H. Yamada and K. Adachi, “Magnetic-Properties and Thermal-Expansion of Fe-Pd Invar- Alloys“, Journal of Magnetism and Magnetic Materials 15-18(1980), p.p. 1201-1202
    51. T. Kubota, T. Okazaki, H. Kimura, T. Watanabe, M. Wuttig and Y. Furuya, “Effect of Rapid Solidification on Giant Magnetostriction in Ferromagnetic Shape Memory Iron-based Alloys”, Science and Technology of Advanced Materials 2 (2002), p.p. 201-207
    52. D. Vokoun and C. T. Hu, “Improvement of Shape Memory Characteristics in Fe-Pd Melt-Spun Shape Memory Ribbons“, Journal of Alloys and Compounds 346 (2002), p.p. 147-153
    53. R. D. James and M. Wuttig, “Magnetostriction of Martensite”, Philosophical Magazine A 77 (1998), p.p. 1273-1299
    54. J. Koeda, Y. Nakamura, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio, “Giant Magnetostriction in Fe-Pd Alloy Single Crystal Exhibiting Martensitic Transformation”, Trans. Mat. Res. Soc. Jap. 26 (2001), p.p. 215-217
    55. J. Cui and R. D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory”, IEEE Transactions on Magnetics 37 (2001), p.p. 2675-2677
    56. H. Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys”, Science and Technology of Advanced Materials 3 (2002), p.p. 165-169
    57. T. Okazaki, H. Nakajima and Y. Furuya, “Large Magnetostriction of Fe-29.6 at% Pd Alloy Ribbon Under Tensile Stress”, Materials Transactions 44 (2003), p.p. 665-668
    58. Y. Liang, Y. Sutou, T. Wada, C. C. Lee, M. Taya, T. Mori, “Magnetic Field-Induced Reversible Actuation Using Ferromagnetic Shape Memory Alloys”, Scripta Materialia 48 (2003), p.p. 1415-1419
    59. R.A. Stern, S.D. Willoughby, A. Ramirez J.M. MacLaren, J. Cui, Q. Pan and R.D. James, “Electronic and Structural Properties of Fe3Pd-Pt Ferromagnetic Shape Memory Alloys”, Journal of Applied Physics 91 (2002), p.p.7818-7820
    60. T. Wada, T. Tagawa and M. Taya, “Martensitic Transformation in Pd-rich Fe-Pd-Pt Alloy”, Scripta Materialia 48 (2003), p.p. 207-211
    61. K. Tsuchiya, T. Nojiri, H. Ohtsuka and M. Umemoto, “Effect of Co and Ni on Martensitic Transformation and Magnetic Properties in Fe-Pd Ferromagnetic Shape Memory Alloys”, Materials. Transactions 44 (2003), p.p. 2499-2502
    62. J. Buschbeck, I. Opahle, S. Fähler, L. Schultz, and M. Richter, “Magnetic properties of Fe-Pd magnetic shape memory alloys: Density functional calculations and epitaxial films”, Physical Review B 77 (2008) 174421
    63. T. Wada, Y. Liang, H. Kato, T, Tagawa, M. Taya and T. Mori, “Structural change and straining in Fe–Pd polycrystals by magnetic field”, Materials Science and Engineering A 361 (2003), p.p. 75–82

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE