研究生: |
葉爾翰 Ye Er-Hen |
---|---|
論文名稱: |
自然耦合圓柱流之大尺度渦流模擬 Large Eddy Simulation of Flow over Circular Cylinder with Natural Coupling |
指導教授: |
白寶實
洪祖全 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 計算流體力學 、大尺度渦漩模擬 、SGS模型 |
外文關鍵詞: | CFD, LES, SGS models |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在日常生活中,經常可以發現到許多渦漩誘發振動(Vortex Induced Vibration, VIV)的現象。當結構體沈浸在流動的流場中,在結構體後端會產生漩渦脫落(Vortex shedding)的現象,這會使系統紊亂度提高,繼而於結構體的上部和下部後方交替連續的在結構體後方形成渦漩流動,而此類流場多屬於紊流。
在計算流體力學(Computational Fluid Dynamic, CFD)中,針對流體在高流速下的紊流行為,已有許多的紊流模型相繼出現,例如混合長度模型及k-ε模型。然而這些以RANS方程式(Reynolds-Averaged Navier-Stokes equation)為基礎發展而來的模型往往是異常複雜的,並且需要利用物理實驗資料作修正,也不能模擬非穩態渦流。就目前我們感興趣的流場是非穩態、流況複雜的情形下,大渦漩模擬(Large Eddy Simulation, LES)會是個不錯的選擇。
本論文目的主要是研究LES中的佔有核心地位的幾種SGS模型(Sub-Grid Scale model),利用LES建立二維圓柱紊流流場模擬,延伸模擬非穩態及複雜幾何結構體流場的基礎能力,並驗證LES對紊流流場模擬的整體表現,量化實驗無法直接或不易量測的參數如壓力場、結構體的升力與阻力係數、渦漩頻率、紊流統計性質等等,以期深入研究其物理機制。經研究後發現,SGS model的選用對模擬結果並不會有明顯的差別,僅對時間平均 分量速度分佈的影響較為明確。此外,二維圓柱紊流模擬在捕捉某些流場特性的表現並不盡人意,甚至在雷諾數高於1500時會產生不正確的結果,日後採用三維數值模擬是必要的作法。
關鍵字:計算流體力學、大渦漩模擬、SGS模型
The phenomena of Vortex Induced Vibration (VIV) could be observed frequently in the daily life. In the downstream region of a structure immersed in the flow field, it usually performs the pattern of the vortex street with the highly turbulent viscosity, which is caused by the vortex shedding from separating shear layers of the structure.
In Computational Fluid Dynamic, there have been many models, such as mixed length model and k-ε model, used for turbulent flow simulation at highly Reynolds numbers. However, the mathematic theory of these models based on the Reynolds-Averaged Navier-Stokes equation (RANS), often represent extremely complicated form and need to be corrected with the experiment database. Also, they are not appropriate to be used to regenerate the unsteady flow field. Currently, Large Eddy Simulation (LES) is a proper choice, due to the capacity of simulation with the unsteady and complicated properties of turbulent.
The primary purpose of this thesis is to investigate the core part of LES, Sub-Grid Scale models (SGS models), and to build two dimension simulation of circular cylinder turbulent flow. On the one hand, this study could be extending the ability of simulation of unsteady, complicated geometric structure flow. On the other hand, the uneasily estimated or unestimated parameters, such as pressure field, drag and lift coefficient, vortex frequency, turbulent statistic properties, etc., are quantified to verify the overall performance of the LES with turbulent flow simulation, and study the physics of turbulent flow in depth. The study shows that the effect with several types of SGS models is insignificant for flow statistics, except for the time-averaged resolved cross-flow velocity distribution. In addition, two dimension simulation is unsatisfying to represent certain flow characteristic properties, even result in incorrect outcome as Reynolds number is higher than 1500. Three dimension numerical simulations should be top priority in future work.
Keyword: CFD, LES, SGS models
1. Huerre, P., and Monkewitz, P. A.,”Local and Global Instabilities in Spatially Developing Flow”, Annual Review of Fluid Mechanics, Vol.21.
2. Farquharson, F.B. et al., 1949, ”Aerodynamic Stability of Suspension Bridges with Special Reference to the Tacoma Narrows Bridge”, The University of Washington Press, Seattle.
3. Blevins, R.D., 1990, ”Flow-Induced Vibration”, Van Nostrand Reinhold Int’1 Company Limited, New York
4. Demirdzic, I. And Peric, M., 1988, “Space Conservation Law in Finite Volume Calculations of Fluid Flow”, Int’1 J. for Numerical Methods in Fluids, Vol.8, 1037-1050.
5. Demirdzic, I. and Peric, M., 1990, “Finite Volume Method for Prediction of Fluid Flow in Arbitrarily Shaped Domains with Moving Boundaries”, Int’1 J. for Numerical Methods in Fluids, Vol. 10, 771-790.
6. Bishop, R.E.D., and Hassan, A.Y., 1964, “The lift and Drag Forces on a Circular Cylinder in a Flowing Field“, Proc. Roy. Soc.(London), Ser.A, 277, 51-75.
7. X. Sun and C. Dalton. 1996,“Application of the LES Method to the Oscillation Flow Past a Circular Cylinder”, Journal of Fluid and Structures, Vol. 10,851-87C.
8. Dalton, Y. Xu., 2000,“The Suppression of Lift on a Circular Cylinder Due to Vortex Shedding at Moderate Reynolds Numbers”, Journal of Fluid and Structures,Vol. 15,617-628.
9. J. Smagorinsky, 1963, “General Circulation Experiments with the Primitive Equations”, The basic experiment, Monthly Weather Rev. Vol.91 pp. 99-164.
10. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model”, J. Physics Fluids, A3, 1760-1765.
11. D.K. Lilly, 1992, “A Proposed Modification of the Germano Subgrid-Scale Closure Method”, J. Physics Fluids, A4, 633-635.
12. W. Zhang, Q. Chen, 2000, “Large Eddy Simulation of Indoor Airflow with a Filtered Dynamic Subgrid Scale Model”, Int. J. Heat Mass Transfer 43 (17), 3219-3231.
13. Kaplun S., 1957 ,“Low Reynolds Number Flow past a Circular Cylinder”, J. Fluid Mech., Vol.6, 595-603.
14. Wu. Jiunn-Chi; Hu, Yung-Chun, 1995,”Numerical Study of Wake Interference behind Two Side-by-Side and Tandem Circular Cylinders”, Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao, Vol. 16,109-122.
15. Ng, C.W.; Ko, N.W.M., 1995,”Flow Interaction behind Two Circular Cylinders of Equal Diameter – a Numerical Study”, Journal of Wind Engineering and Industrial Aerodynamics, v 54-55,277-287.
16. Proudman I. Pearson JR., 1957, “Expansions at Small Reynolds Numbers for the Flow past a Sphere and a Circular Cylinder”, J Fluid Mech,Vol.2, 237-62.
17. Issa, R. I., 1985,”Solution of the Implicit Discretized Fluid Flow Equations by Operator-Splitting”, J. Computational Physics, Vol.62, 40-65.
18. Issa, R. I., Ahmadi-Befrui, B., Beshay, K.R., Gosman, A.D., 1991, ”Solution of the Implicit Discretized Reacting Flow Equations by Operator-Splitting”, J. Computational Physics, Vol.93, 388-410.
19. Adaptive Research Division, 1995, “CFD2000 Computational Fluid Dynamics System Version 2.2c User’s Manual”, Pacific-Sierra Research Corporation, California, USA.
20. Desrdorff, J.W., 1973, “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers”, J. Fluid Mech., Vol.41, 453-465.
21. David C. Wilcox, 1998, “Turbulence Modeling for CFD, Second Edition”, ISBN 0-9636051-5-1, 9-13, 30-45, 377-394.
22. Moin, P., Kim, J., 1982, “Numerical Investigation of Turbulent Channel Flow”, J. Fluid Mech., Vol.118, 341-377.
23. S. Murakami et al., 1999, “CFD Analysis of Turbulent Flow past Square Cylinder using Dynamic LES”, J. of Fluids and Structures., Vol.13, 1097-1112
24. Najjar, F.M., Tafti, D.K., 1996, “Study of Discrete Test Filters and Finite Difference Approximations for the Dynamic Subgrid-Scale Stress Model”, Phys. of Fluids., Vol.8(4), 1076-1088.
25. Vasilyev, O., Lund, T.S., Moin, P., 1998, “A General Class of Commutative Filters for LES in Complex Geometries”, J. of Compu. Phys., Vol.146, 82-104.
26. T. Kogaki et al., 1997, “Large Eddy Simulation of flow around a rectangular cylinder”, Fluid Dynamics Research, Vol.20,11-24
27. Koopman, G.H., 1967,“The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers”, J. Fluid Mech., Vol. 27, pp. 501-512.
28. Griffin. O.M., 1971, “The Unsteady Wake of an Oscillating Cylinder at Low Reynolds Number”, J. Applied Mech., Vol. 38, pp. 729-738.
29. Parkinson, G., 1989, “Phenomena and Modeling of Flow-Induced Vibrations of Bluff Bodies”, Progress in Aerospace Sciences, Vol. 26, pp. 169-224.
30. Sakamoto, H., and Haniu, H., 1994, “Optimum Suppression of Fluid Forces Acting on a Circular Cylinder”, ASME Journal of Fluids Engineering, Vol. 116, No. 2, pp.221-222.
31. Lienhard, J.H., 1966, “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders”, Washington State University College of Engineering, Research Division Bulletin, 300.
32. Feng, C. C., 1968, “The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillating Circulator and D-Section Cylinder”, M. Sc. Thesis, University of British Colimbia.
33. van der Wijngaart, R.J.F, 1990, “Composite Grid Techniques and Adaptive Mesh Refinement in computational Fluid Dynamics”, Report CLaSSic-90-07, Dept. Computer Science, Stanford Univ.
34. Schewe, G., 1983, “On the Force Fluctuations Acting on a Circular Circular Cylinder in Crossflow from Subcritical up to Transcritical Reynolds Numbers”, J. Fluid Mech., Vol. 133, pp. 265-285.
35. Arthur G. Kravchenko and Parviz Moin, 1999, “Numerical studies of flow over a circular cylinder at ReD = 3900”, Phys. of Fluids, Vol. 12, pp.403-417.
36. W. H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery, Numerical Recipes(Cambridge University Press, Canbridge, 1992)
37. Lyn, D.A., S. Einav, W. Rodi and J.H. Park, 1994, “A laser-Doppler velocimatry study of ensemble–averaged characteristics of the turbulent near wake of asquare cylinder”, Report No. SFB 210/E/100.
38. Bardina, J., Ferziger, J.H., Reynolds, W.C., 1980, “Improved subgrid models for large eddy simulation”, AIAA paper 80-1357.
39. Ferziger J.H., Perić M., 2002, “Computational Methods for Fluid Dynamics, 3rd Edition”, ISBN 3-540-42074-6.
40. Versteeg H. K., Malalasekera W., 1995, “A Introduction to Computational Fluid Dynamics, the Finite Volume Method”, ISBN 0-582-21884-5.