簡易檢索 / 詳目顯示

研究生: 吳振聲
Wu, Chen-Sheng
論文名稱: 區分Omicron變異株與其他SARS-CoV-2譜系的多重即時RT-qPCR之嶄新檢測策略開發
Development of a new strategy of multiplex real-time RT-qPCR assay for differentiating Omicron variants from other SARS-CoV-2 lineages
指導教授: 汪宏達
Wang, Horng-Dar
郭俊賢
Kuo, Chun-Hsien
口試委員: 陳雲翔
Chen, Yun-Hsiang
張壯榮
Chang, Chuang-Rung
李冠林
Lee, Kuan-Lin
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 77
中文關鍵詞: SARS-CoV-2Omicron 變異株多重 RT-qPCR擴增子競爭
外文關鍵詞: SARS-CoV-2, Omicron variants, multiplex RT-qPCR, amplicon-competition
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SARS-CoV-2 Omicron 變異株的出現及其全球主導地位,促使開發特異且靈敏的診斷工具以進行變異株監測與流行病學追蹤。在此,本研究提出一種新的多重即時 RT-qPCR 檢測方法,透過針對核殼蛋白(N)基因中的一個獨特9鹼基缺失(del28362-28370),特異性地區分 Omicron 變異株與其他 SARS-CoV-2 系譜。本研究通過對來自 NCBI 資料庫的 752,366 條 SARS-CoV-2 基因組序列的綜合分析,鑑定出此缺失為 Omicron 變異株中的高度保守分子標記,該缺失出現在 97.54% 的 Omicron 變異株中,且在其他系譜中不存在。
    本研究開發了一種創新的擴增競爭策略,採用雙寡核苷酸方法:一個跨越缺失區域的熒光探針以及一個橫跨缺失位點的正向引子,並輔以3'端磷酸酯修飾的競爭性寡核苷酸(N-oligo)以增強特異性。該檢測方法在寬廣的動態範圍內展現出卓越的靈敏度和特異性,成功檢測到在鼻咽樣本中1,500至1.5×10⁶ 拷貝/毫升的病毒載量。值得注意的是,我們的驗證研究在臨床評估中顯示100%的陽性百分比一致性(PPA)和陰性百分比一致性(NPA),在包括 BA.1、BA.2、BA.3 及當前關注變異株的各種 Omicron 子系譜中表現一致。
    至2024年3月的延伸監測結果證實了該檢測方法對於新出現變異株(包括 XBB.1.5、XBB.1.16、EG.5、BA.2.86 和 JN.1)的持續有效性,包容性保持在94.6%以上。此方法學提供了一個快速辨別 Omicron 變異株的穩健框架,並為開發針對特定基因突變的未來變異株檢測策略提供了寶貴的範本。本研究的結果展示了針對特定變異株的分子診斷在變異株監測中的潛力,有助於在持續的 COVID-19 疫情中加強監測與控制策略。


    The emergence and global predominance of SARS-CoV-2 Omicron variants have necessitated the development of specific and sensitive diagnostic tools for variant surveillance and epidemiological monitoring. Here, we present a novel multiplex real-time RT-qPCR assay that specifically differentiates Omicron variants from other SARS-CoV-2 lineages by targeting a distinctive 9-base pair deletion (del28362-28370) within the nucleocapsid (N) gene. Through comprehensive analysis of 752,366 SARS-CoV-2 genomic sequences from the NCBI database, we identified this deletion as a highly conserved molecular signature present in 97.54% of Omicron variants while absent in other lineages.
    We developed an innovative amplicon-competition strategy incorporating a dual-oligonucleotide approach: a fluorescent probe spanning the deletion region and a forward primer straddling the deletion site, complemented by a 3'-phosphate-modified competitive oligonucleotide (N-oligo) to enhance specificity. The assay demonstrated remarkable sensitivity and specificity across a broad dynamic range, successfully detecting viral loads from 1,500 to 1.5×10⁶ copies per milliliter in nasopharyngeal specimens. Notably, our validation studies revealed 100% Positive Percentage Agreement (PPA) and Negative Percentage Agreement (NPA) in clinical evaluations, with consistent performance across various Omicron sublineages including BA.1, BA.2, BA.3, and contemporary variants of interest.
    Extended surveillance through March 2024 confirmed the assay's sustained effectiveness against emerging variants, including XBB.1.5, XBB.1.16, EG.5, BA.2.86, and JN.1, with maintained inclusivity exceeding 94.6%. This methodology offers a robust framework for rapid Omicron variant identification and provides a valuable template for developing detection strategies for future variants characterized by specific genetic alterations. Our findings demonstrate the potential of targeted molecular diagnostics in variant-specific surveillance, contributing to enhanced monitoring and control strategies in the ongoing COVID-19 pandemic.

    Abstract 2 中文摘要 3 誌謝 4 聲明 6 Contents 7 Introduction 9 Overview 9 1. Recent Advances in Molecular Diagnostic Technologies for COVID-19 11 2. Unique Characteristics and Evolution of the Omicron Variant 15 3. Strategic Importance of the N Gene in SARS-CoV-2 Detection 19 4. Evolution and Applications of Competitive PCR in Viral Diagnostics 22 5. Current Challenges in Molecular Diagnostics of SARS-CoV-2 26 Significance of this study 30 Specific Aims 32 Materials and Methods 34 Acquisition and Analysis of SARS-CoV-2 Genomic Data 34 Development and Optimization of RT-PCR Detection Systems 35 Implementation of Reference Standards and Control Parameters 36 Nucleic Acid Extraction and RT-PCR Methodology 36 Analytical Performance Assessment Protocol 38 Clinical Performance Evaluation Methodology 39 Results 40 Identification of Omicron-Specific Genomic Deletion 40 Development of Novel Detection Strategy 40 Design and Implementation of Dual Oligonucleotide Approach 41 Surveillance of Emerging Variants and Assay Inclusivity 41 Initial Experimental Validation 42 Enhancement of Assay Specificity through N-oligo Integration 43 Comprehensive Performance Evaluation 43 Clinical Validation and Performance Metrics 44 Discussion 45 Future Directions 49 Impact of the Research 51 References 52 Tables 58 Figures 72

    Accorsi EK, Britton A, Fleming-Dutra KE, et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and delta variants. JAMA. 2022;327(7):639-651. doi: 10.1001/jama.2022.0470.
    Amaral C, Antunes W, Moe E, et al. A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples. Sci Rep. 2021;11(1):16430. doi: 10.1038/s41598-021-95799-6.
    Baba MM, Bitew M, Fokam J, et al. Diagnostic performance of a colorimetric RT-LAMP for the identification of SARS-CoV-2: a multicenter prospective clinical evaluation in sub-Saharan Africa. EClinicalMedicine. 2021;40:101101. doi: 10.1016/j.eclinm.2021.101101.
    Bal A, Destras G, Gaymard A, et al. Two-step strategy for the identification of SARS-CoV-2 variant of concern 202012/01 and other variants with spike deletion H69-V70, France, August to December 2020. Euro Surveill. 2021;26(3):2100008. doi: 10.2807/1560-7917.ES.2021.26.3.2100008.
    Brown KA, Gubbay J, Hopkins J, et al. S-gene target failure as a marker of variant B.1.1.7 among SARS-CoV-2 isolates in the greater toronto area, December 2020 to March 2021. JAMA. 2021;325(20):2115-2116. doi: 10.1001/jama.2021.5607.
    Butler-Laporte G, Lawandi A, Schiller I, et al. Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2. JAMA Intern Med. 2021;181(3):353-360. doi: 10.1001/jamainternmed.2020.8876.
    Cherian S, Potdar V, Jadhav S, et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms. 2021;9(7):1542. doi: 10.3390/microorganisms9071542.
    Chu VT, Schwartz NG, Donnelly MAP, et al. Comparison of home antigen testing with RT-PCR and viral culture during the course of SARS-CoV-2 infection. JAMA Intern Med. 2022;182(7):701-709. doi: 10.1001/jamainternmed.2022.1827.
    Collier DA, De Marco A, Ferreira IATM, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021;593(7857):136-141. doi: 10.1038/s41586-021-03412-7.
    Corman VM, Haage VC, Bleicker T, et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: a single-centre laboratory evaluation study. Lancet Microbe. 2021;2(7):e311-e319. doi: 10.1016/S2666-5247(21)00056-2.
    Dao Thi VL, Herbst K, Boerner K, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(556):eabc7075. doi: 10.1126/scitranslmed.abc7075.
    Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS-CoV-2: a target for vaccine development. J Virol. 2020;94(13):e00647-20. doi: 10.1128/JVI.00647-20.
    Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815-821. doi: 10.1126/science.abh2644.
    Gangavarapu K, Latif AA, Mullen JL, et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023;20(4):512-522. doi: 10.1038/s41592-023-01769-3.
    Greaney AJ, Starr TN, Gilchuk P, et al. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe. 2021;29(1):44-57.e9. doi: 10.1016/j.chom.2020.11.007.
    Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-424. doi: 10.1038/s41579-021-00573-0.
    Huang y, yang C, Xu X, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-1149. doi: 10.1038/s41401-020-0485-4.
    Jiang M, Pan W, Arasthfer A, et al. Development and validation of a rapid, single-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for reliable and high-throughput screening of COVID-19. Front Cell Infect Microbiol. 2020;10:331. doi: 10.3389/fcimb.2020.00331.
    Jurek T, Rorat M, Szleszkowski Ł, et al. SARS-CoV-2 viral RNA is detected in the bone marrow in post-mortem samples using RT-LAMP. Diagnostics. 2022;12(2):515. doi: 10.3390/diagnostics12020515.
    King KL, Wilson S, Napolitano JM, et al. SARS-CoV-2 variants of concern alpha and delta show increased viral load in saliva. PLoS One. 2022;17(5):e0267750. doi: 10.1371/journal.pone.0267750.
    Kyosei y, yamura S, Namba M, et al. Antigen tests for COVID-19. Biophys Physicobiol. 2021;18(0):28-39. doi: 10.2142/biophysico.bppb-v18.004.
    Lee RA, Herigon JC, Benedetti A, et al. Performance of saliva, oropharyngeal swabs, and nasal swabs for SARS-CoV-2 molecular detection: a systematic review and meta-analysis. J Clin Microbiol. 2021;59(5):e02881-20. doi: 10.1128/JCM.0
    Li G, Hilgenfeld R, Whitley R, et al. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov. 2023;22(6):449-475. doi: 10.1038/s41573-023-00672-y.
    Lu X, Wang L, Sakthivel SK, et al. US CDC real-time reverse transcription PCR panel for detection of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(8):1654-1665. doi: 10.3201/eid2608.201246.
    Luan B, Wang H, Huynh T. Enhanced binding of the N501y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett. 2021;595(10):1454-1461. doi: 10.1002/1873-3468.14076.
    Lyngse FP. Household transmission of the SARS-CoV-2 Omicron variant in Denmark. Nat Commun. 2022;13:1-7.
    Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 Variant. N Engl J Med. 2021;384(20):1885-1898. doi: 10.1056/NEJMoa2102214.
    Mardian y, Kosasih H, Karyana M, et al. Review of current COVID-19 diagnostics and opportunities for further development. Front Med (Lausanne). 2021;8:615099. doi: 10.3389/fmed.2021.615099.
    Meng B, Kemp SA, Papa G, et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021;35(13):109292. doi: 10.1016/j.celrep.2021.109292.
    Metzger CMJA, Lienhard R, Seth-Smith HMB, et al. PCR performance in the SARS-CoV-2 Omicron variant of concern? Swiss Med Wkly. 2021;151(4950):w30120. doi: 10.4414/smw.2021.w30120.
    Mohammadi A, Esmaeilzadeh E, Li y, et al. SARS-CoV-2 detection in different respiratory sites: a systematic review and meta-analysis. EBioMedicine. 2020;59:102903. doi: 10.1016/j.ebiom.2020.102903.
    Naveca FG, Nascimento V, de Souza VC, et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med. 2021;27(7):1230-1238. doi: 10.1038/s41591-021-01378-7.
    Pulliam JRC, van Schalkwyk C, Govender N, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science. 2022;376(6593):eabn4947. doi: 10.1126/science.abn4947.
    Seitz T, Lickefett B, Traugott M, et al. Evaluation of five commercial SARS-CoV-2 antigen tests in a clinical setting. J Gen Intern Med. 2022;37(6):1494-1500. doi: 10.1007/s11606-022-07448-x.
    Shishkova K, Sirakova B, Shishkov S, et al. A comparative analysis of molecular biological methods for the detection of SARS-CoV-2 and testing the in vitro infectivity of the virus. Microorganisms. 2024;12(1):180. doi: 10.3390/microorganisms12010180.
    Sirakov I, Popova-Ilinkina R, Ivanova D, et al. Development of nested PCR for SARS-CoV-2 detection and its application for diagnosis of active infection in cats. Vet Sci. 2022;9(6):272. doi: 10.3390/vetsci9060272.
    Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5):1295-1310.e20. doi: 10.1016/j.cell.2020.08.012.
    Takashita E, Kinoshita N, yamayoshi S, et al. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N Engl J Med. 2022;386(10):995-998. doi: 10.1056/NEJMc2119407.
    Tan ST, Kwan AT, Rodríguez-Barraquer I, et al. Infectiousness of SARS-CoV-2 breakthrough infections and reinfections during the Omicron wave. Nat Med. 2023;29(2):358-365. doi: 10.1038/s41591-022-02138-x.
    Thompson D, Lei y. Mini review: recent progress in RT-LAMP enabled COVID-19 detection. Sens Actuators Rep. 2020;2(1):100017. doi: 10.1016/j.snr.2020.100017.
    Todsen T, Jakobsen KK, Grønlund MP, et al. COVID-19 rapid antigen tests with self-collected vs health care worker-collected nasal and throat swab specimens. JAMA Netw Open. 2023;6(12):e2344295. doi: 10.1001/jamanetworkopen.2023.44295.
    Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. 2022;603(7902):679-686. doi: 10.1038/s41586-022-04411-y.
    Volz E, Mishra S, Chand M, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593(7858):266-269. doi: 10.1038/s41586-021-03470-x.
    Yang W, Shaman JL. COVID-19 pandemic dynamics in South Africa and epidemiological characteristics of three variants of concern (beta, delta, and Omicron). Elife. 2022;11:e78933. doi: 10.7554/eLife.78933.
    Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021;184(9):2348-2361.e6. doi: 10.1016/j.cell.2021.02.037.
    Zhou P, yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7.

    QR CODE