簡易檢索 / 詳目顯示

研究生: 林哲志
Lin, Jhe-Jhih
論文名稱: 雙效桿狀病毒轉導神經細胞之研究
Application of Bi-cistronic Bacmam Vector in Neuron
指導教授: 詹鴻霖
Chan, Hong-Lin
吳宗遠
Wu, Tzong-Yuan
口試委員: 李敏西
Lee, Min-Shi
李守倫
Lee, Shou-Lun
滕昭怡
Teng, Chao-Yi
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 74
中文關鍵詞: BacMam轉導作用Neuroligin-1突觸核蛋白選擇性剪接作用
外文關鍵詞: BacMam, Transduction, Neuroligin-1, Alpha-synuclein, Alternative spliing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BacMam 是以桿狀病毒為基礎所發展的哺乳類細胞基因遞送載體。我們首先嘗試以 BacMam 作為神經細胞的基因遞送載體,發現 BacMam 雖然對於海馬迴神經元的轉導效率低,但對未分化的神經前驅細胞反而可以進行有效率的基因轉導:於 BacMam 轉導神經前驅細胞後以 5 mM 的組蛋白去乙醯酶抑制劑 NaBt 進行處理可提高轉導效率至 80%。除此之外,我們亦發現 alpha-synuclein (αSyn) 和綠螢光蛋白融合 (αSyn-EGFP) 後能夠提高綠螢光蛋白基因的表達量以及延長外源蛋白的表現時間。因此,帶有 αSyn-EGFP 基因的 BacMam 可做為神經細胞分化或標定之工具。於是我們接著使用分別帶有 αSyn-EGFP 與 neuroligin-1-EGFP (NLG1-EGFP) 的 BacMam 進行轉導神經前驅細胞,在神經分化過程中追蹤 αSyn 或 NLG1 的分布情形。結果顯示過度表達的 αSyn-EGFP 揭示了能夠長期表達的能力,而 NLG1-EGFP 則無,並且顯示 αSyn 位於細胞質和細胞核中,而 NLG1 則是均勻分布於細胞膜上但並非集中於後突觸膜上。這是第一次使用 BacMam 將基因遞送入神經前驅細胞衍生的神經細胞中,並且成功在體外神經前驅細胞發育過程中追蹤 αSyn 位置。於目前的文獻中因 NLG1 的派送訊息還尚未清楚,於是我們構築了不同區域的 NLG1,包含全長、N 端剃除和 C 端剃除等融合螢光蛋白基因的 BacMam 載體。我們的結果推測:可能的派送訊息區域位於 NLG1 之 C 端 772-804 胺基酸。除此之外,在 vAcCMV-NLG1 (1-843)-Lir-EGFP 轉導的細胞當中,我們發現 NLG1 上可能存在一尚未發現的選擇性剪接異體。我們經由分析綠螢光蛋白分佈、西方墨點法、選擇性剪接預測軟體、反轉錄聚合酶鏈式反應和序列比對等方法證明此選擇性剪接位的存在。結果顯示 NLG1 (1-843)-Lir-EGFP mRNA 會經由選擇性剪接作用導致 Lir-IRES 的剃除,產生 NLG1 (1-763)-EGFP 融合產物,於 NLG1 上少了 81 個胺基酸且與西方墨點法所臆測的分子量一致。更進一步,我們發現一種新型的 NLG1 內生性選擇性剪接異體,轉譯出 C 端剃除 17 個胺基酸的 NLG1 異體。這是首度發現 NLG1 之 C 端存有內生性的選擇性剪接位,對其生理功能則有待進一步確認。


    BacMam is a baculovirus-based gene delivery vector for mammalian cells. In the beginning, we used BacMam as a delivery tool for transferring genes into neurons. We found out that the transduction efficiency of BacMam is low in hippocampal neurons, while it can efficiently transduce undifferentiated neural stem/progenitor cells (rNSPCs) in vitro. After treatment with 5mM NaBt, an inhibitor of histone deacetylases (HDACi), the transduction efficiency of BacMam in rNSPCs can be enhanced up to 80%. In addition, the expression of EGFP can be elevated and the duration of foreign protein expression can be prolonged by fused with alpha-synuclein (formed αSyn-EGFP). Thus, αSyn-EGFP BacMam has the potential to become a tool for neuronal differentiation or labelling. We then transduced rNSPCs with αSyn-EGFP and neuroligin-1-EGFP (NLG1-EGFP) BacMam, respectively, and tracked the transport of αSyn or NLG1 during neuronal differentiation. The results showed that overexpression of αSyn-EGFP but not NLG1-EGFP revealed the property of long-term expression, and indicated that αSyn was located in both the cytoplasm and the nucleus, whereas NLG1 was stably localized to the plasma membrane (not cluster in the postsynaptic membrane). This is the first time using BacMam to deliver genes into rNSPC-derived neurons and successfully track αSyn during rNSPCs development in vitro. Because of the sorting signal of NLG1 is not fully understood in the current literature. We constructed different region of NLG1 fused with fluorescence gene, including full-length, N-terminal truncated and C-terminal truncated into BacMam vector. According to our data, we can speculate that the dendritic sorting signal located within amino acid residues 772–804 of NLG1 C-terminus. Moreover, we identified that NLG1 may contain a previously undiscovered alternative splicing variant in vAcCMV-NLG1 (1-843) -Lir-EGFP transduced cells. Using EGFP distribution, Western blotting, alternative splice site predictor, RT-PCR, and sequence alignment, we demonstrated the presence of alternative splicing site. The results indicated that NLG1 (1-843)-Lir-EGFP mRNA undergoes alternative splicing, resulting in the Lir-IRES skipping and producing NLG1 (1-763)-EGFP fusion transcript in which 81 amino acid residues deleted from the C terminal of NLG1 and consistent with the estimated molecular weight determined by Western blotting. Furthermore, we identified a novel endogenous alternative splice variant of NLG1 which 17 amino acid residues deleted from the C terminus. This is the first study to identify that endogenous NLG1 has alternative splice sites at C terminus, the physiological function of this variant remains to be clarified.

    List of Contents 中文摘要 I Abstract II Acknowledgments 致謝 III List of Contents IV List of Tables VII List of Figures VIII Abbreviations X Chapter 1. Introduction 1 1.1 Delivery techniques for neuronal Cells 1 1.2 Baculovirus biology and life cycle 5 1.3 Application of baculovirus as an expression system 7 1.4 Internal ribosome entry sites, IRES 11 1.5 The postsynaptic cell adhesion molecule, neuroligin-1 11 1.6 The presynaptic protein, alpha-synuclein 13 1.7 Aim of this study 14 Chapter 2. Materials and Methods 15 2.1. Reagents 15 2.2. Cell culture 16 2.3. Construction of BacMam vector 16 2.4. Cotransfection of insect cells and generation of the BacMam viral stock 18 2.5. Transduction of mammalian cells with BacMam virus 19 2.6. SDS-PAGE, antibodies and Western blot analysis 19 2.7. Reverse Transcriptase PCR 20 Chapter 3. Results and Discussion 21 Part I Development of synaptic protein-EGFP based BacMam vectors to neuronal cells 21 3.1.1. Rationale and construction of synaptic protein-EGFP based BacMam vectors 21 3.1.2. Expression of NLG1 and αSyn fusion proteins in mammalian cells 22 3.1.3. αSyn prolong the foreign proteins expression 24 3.1.4. Primary cultured neurons transduced with αSyn-EGFP BacMam baculovirus 25 Part II Transgene expression and differentiation of baculovirus-transduced rat neural stem/progenitor cells 27 3.2.1. Baculovirus transduction of rat neural stem/progenitor cells 27 3.2.2. Monitoring of NLG1-EGFP and αSyn-ECFP fusion proteins during neuronal differentiation 28 Part III Identification of a novel splice variant of NLG1 using bicistronic BacMam system 30 3.3.1. Design and strategy for construction of NLG1-based BacMam 30 3.3.2. An unexpected NLG1/EGFP fusion transcript generated in mammalian cells transduced with bi-BacMam NLG1 baculovirus 31 3.3.3. NLG1/EGFP fusion transcript generated from D6-A9 alternative splicing 33 3.3.4. Potential novel alternative splice sites in endogenous NLG1 35 References 38 Tables 50 Figures 54

    Airenne, K.J., Hu, Y.-C., Kost, T.A., Smith, R.H., Kotin, R.M., Ono, C., Matsuura, Y., Wang, S., and Ylä-Herttuala, S. (2013). Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol. Ther. J. Am. Soc. Gene Ther. 21, 739–749.
    Akli, S., Caillaud, C., Vigne, E., Stratford-Perricaudet, L.D., Poenaru, L., Perricaudet, M., Kahn, A., and Peschanski, M.R. (1993). Transfer of a foreign gene into the brain using adenovirus vectors. Nat. Genet. 3, 224–228.
    Araç, D., Boucard, A.A., Özkan, E., Strop, P., Newell, E., Südhof, T.C., and Brunger, A.T. (2007). Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1β Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions. Neuron 56, 992–1003.
    Bang, M.L., and Owczarek, S. (2013). A Matter of Balance: Role of Neurexin and Neuroligin at the Synapse. Neurochem. Res. 38, 1174–1189.
    Barrow, S.L., Constable, J.R., Clark, E., El-Sabeawy, F., McAllister, A.K., and Washbourne, P. (2009). Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Develop. 4, 17.
    Blömer, U., Naldini, L., Kafri, T., Trono, D., Verma, I.M., and Gage, F.H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649.
    Boucard, A.A., Chubykin, A.A., Comoletti, D., Taylor, P., and Südhof, T.C. (2005). A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48, 229–236.
    Boyce, F.M., and Bucher, N.L. (1996). Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 93, 2348–2352.
    Bray, G.E., Ying, Z., Baillie, L.D., Zhai, R., Mulligan, S.J., and Verge, V.M.K. (2013). Extracellular pH and neuronal depolarization serve as dynamic switches to rapidly mobilize trkA to the membrane of adult sensory neurons. J. Neurosci. Off. J. Soc. Neurosci. 33, 8202–8215.
    Büning, H., Perabo, L., Coutelle, O., Quadt-Humme, S., and Hallek, M. (2008). Recent developments in adeno-associated virus vector technology. J. Gene Med. 10, 717–733.
    Carstens, E.B., Jian Liu, J., and Dominy, C. (2002). Identification and molecular characterization of the baculovirus CfMNPV early genes: ie-1, ie-2 and pe38. Virus Res. 83, 13–30.
    Chao, C., Kan, D., Lo, T., Lu, K., and Chien, C. (2015). Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 5.
    Chen, W.-S., Villaflores, O.B., Lu, C.-F., Wu, H.-I., Chen, Y.-J., Teng, C.-Y., Chang, Y.-C., Chang, S.-L., and Wu, T.-Y. (2012). Functional expression of rat neuroligin-1 extracellular fragment by a bi-cistronic baculovirus expression vector. Protein Expr. Purif. 81, 18–24.
    Chen, Y.-R., Zhong, S., Fei, Z., Hashimoto, Y., Xiang, J.Z., Zhang, S., and Blissard, G.W. (2013). The Transcriptome of the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus in Trichoplusia ni Cells. J. Virol. 87, 6391–6405.
    Chih, B., Engelman, H., and Scheiffele, P. (2005). Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328.
    Chih, B., Gollan, L., and Scheiffele, P. (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51, 171–178.
    Chikhlikar, P., Barros de Arruda, L., Agrawal, S., Byrne, B., Guggino, W., August, J.T., and Marques Jr., E.T.A. (2004). Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8+ responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology 323, 220–232.
    Chin, T.-Y., Kao, C.-H., Wang, H.-Y., Huang, W.-P., Ma, K.-H., and Chueh, S.-H. (2010). Inhibition of the mammalian target of rapamycin promotes cyclic AMP-induced differentiation of NG108-15 cells. Autophagy 6, 1139–1156.
    Comoletti, D., Flynn, R., Jennings, L.L., Chubykin, A., Matsumura, T., Hasegawa, H., Südhof, T.C., and Taylor, P. (2003). Characterization of the Interaction of a Recombinant Soluble Neuroligin-1 with Neurexin-1β. J. Biol. Chem. 278, 50497–50505.
    Condreay, J.P., and Kost, T.A. (2007). Baculovirus expression vectors for insect and mammalian cells. Curr. Drug Targets 8, 1126–1131.
    Condreay, J.P., Witherspoon, S.M., Clay, W.C., and Kost, T.A. (1999). Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. U. S. A. 96, 127–132.
    Coura, R. dos S., and Nardi, N.B. (2007). The state of the art of adeno-associated virus-based vectors in gene therapy. Virol. J. 4, 99.
    Cox, M.M.J. (2012). Recombinant protein vaccines produced in insect cells. Vaccine 30, 1759–1766.
    Craig, A.M., Graf, E.R., and Linhoff, M.W. (2006). How to build a central synapse: clues from cell culture. Trends Neurosci. 29, 8–20.
    Dahm, R., Zeitelhofer, M., Götze, B., Kiebler, M.A., and Macchi, P. (2008). Visualizing mRNA localization and local protein translation in neurons. Methods Cell Biol. 85, 293–327.
    Dalby, B., Cates, S., Harris, A., Ohki, E.C., Tilkins, M.L., Price, P.J., and Ciccarone, V.C. (2004). Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods San Diego Calif 33, 95–103.
    Davidson, B.L., Allen, E.D., Kozarsky, K.F., Wilson, J.M., and Roessler, B.J. (1993). A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet. 3, 219–223.
    Davis, B.R., Yannariello-Brown, J., Prokopishyn, N.L., Luo, Z., Smith, M.R., Wang, J., Carsrud, N.D., and Brown, D.B. (2000). Glass needle-mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells. Blood 95, 437–444.
    Dogan, R.I., Getoor, L., Wilbur, W.J., and Mount, S.M. (2007). SplicePort—An interactive splice-site analysis tool. Nucleic Acids Res. 35, W285–W291.
    Dresbach, T., Neeb, A., Meyer, G., Gundelfinger, E.D., and Brose, N. (2004). Synaptic targeting of neuroligin is independent of neurexin and SAP90/PSD95 binding. Mol. Cell. Neurosci. 27, 227–235.
    Ehrengruber, M.U., Hennou, S., Büeler, H., Naim, H.Y., Déglon, N., and Lundstrom, K. (2001). Gene Transfer into Neurons from Hippocampal Slices: Comparison of Recombinant Semliki Forest Virus, Adenovirus, Adeno-Associated Virus, Lentivirus, and Measles Virus. Mol. Cell. Neurosci. 17, 855–871.
    Emamzadeh, F.N. (2016). Alpha-synuclein structure, functions, and interactions. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 21. 29.
    Epstein, A.L. (2009). HSV-1-derived amplicon vectors: recent technological improvements and remaining difficulties--a review. Mem. Inst. Oswaldo Cruz 104, 399–410.
    Felberbaum, R.S. (2015). The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 10, 702–714.
    Felgner, J.H., Kumar, R., Sridhar, C.N., Wheeler, C.J., Tsai, Y.J., Border, R., Ramsey, P., Martin, M., and Felgner, P.L. (1994). Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.
    de Felipe, P., and Ryan, M.D. (2004). Targeting of Proteins Derived from Self-Processing Polyproteins Containing Multiple Signal Sequences. Traffic 5, 616–626.
    Fortin, D.L., Troyer, M.D., Nakamura, K., Kubo, S., Anthony, M.D., and Edwards, R.H. (2004). Lipid Rafts Mediate the Synaptic Localization of α-Synuclein. J. Neurosci. 24, 6715–6723.
    Geller, A.I., and Breakefield, X.O. (1988). A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241, 1667–1669.
    George, J.M. (2002). The synucleins. Genome Biol. 3, REVIEWS3002.
    Giasson, B.I., Murray, I.V., Trojanowski, J.Q., and Lee, V.M. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem. 276, 2380–2386.
    Goedert, M., Spillantini, M.G., Del Tredici, K., and Braak, H. (2013). 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24.
    Goers, J., Manning-Bog, A.B., McCormack, A.L., Millett, I.S., Doniach, S., Di Monte, D.A., Uversky, V.N., and Fink, A.L. (2003). Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry (Mosc.) 42, 8465–8471.
    Goetze, B., Grunewald, B., Baldassa, S., and Kiebler, M. (2004). Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J. Neurobiol. 60, 517–525.
    Gonçalves, S., and Outeiro, T.F. (2013). Assessing the Subcellular Dynamics of Alpha-synuclein Using Photoactivation Microscopy. Mol. Neurobiol. 47, 1081–1092.
    Gresch, O., Engel, F.B., Nesic, D., Tran, T.T., England, H.M., Hickman, E.S., Körner, I., Gan, L., Chen, S., Castro-Obregon, S., et al. (2004). New non-viral method for gene transfer into primary cells. Methods San Diego Calif 33, 151–163.
    Herniou, E.A., and Jehle, J.A. (2007). Baculovirus phylogeny and evolution. Curr. Drug Targets 8, 1043–1050.
    Ho, Y.-C., Chung, Y.-C., Hwang, S.-M., Wang, K.-C., and Hu, Y.-C. (2005). Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J. Gene Med. 7, 860–868.
    Ho, Y.-C., Lee, H.-P., Hwang, S.-M., Lo, W.-H., Chen, H.-C., Chung, C.-K., and Hu, Y.-C. (2006). Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Ther. 13, 1471–1479.
    Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., and Strauss, M. (1995). Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. U. S. A. 92, 10099–10103.
    Hu, Y. (2005). Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin. 26, 405–416.
    Hu, Y.-C., Yao, K., and Wu, T.-Y. (2008). Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev. Vaccines 7, 363–371.
    Huang, Y., Chegini, F., Chua, G., Murphy, K., Gai, W., and Halliday, G.M. (2012). Macroautophagy in sporadic and the genetic form of Parkinson’s disease with the A53T α-synuclein mutation. Transl. Neurodegener. 1, 2.
    Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T.W., and Südhof, T.C. (1997). Binding of neuroligins to PSD-95. Science 277, 1511–1515.
    Jang, S.K., Kräusslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., and Wimmer, E. (1988). A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643.
    Jehle, J.A., Blissard, G.W., Bonning, B.C., Cory, J.S., Herniou, E.A., Rohrmann, G.F., Theilmann, D.A., Thiem, S.M., and Vlak, J.M. (2006). On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 151, 1257–1266.
    Kaikkonen, M.U., Maatta, A.I., Ylä-Herttuala, S., and Airenne, K.J. (2010). Screening of Complement Inhibitors: Shielded Baculoviruses Increase the Safety and Efficacy of Gene Delivery. Mol. Ther. 18, 987–992.
    Kang, Y., Stein, C.S., Heth, J.A., Sinn, P.L., Penisten, A.K., Staber, P.D., Ratliff, K.L., Shen, H., Barker, C.K., Martins, I., et al. (2002). In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J. Virol. 76, 9378–9388.
    Karra, D., and Dahm, R. (2010). Transfection techniques for neuronal cells. J. Neurosci. Off. J. Soc. Neurosci. 30, 6171–6177.
    Kataoka, C., Kaname, Y., Taguwa, S., Abe, T., Fukuhara, T., Tani, H., Moriishi, K., and Matsuura, Y. (2012). Baculovirus GP64-Mediated Entry into Mammalian Cells. J. Virol. 86, 2610–2620.
    Knight, D., Xie, W., and Boulianne, G.L. (2011). Neurexins and neuroligins: recent insights from invertebrates. Mol. Neurobiol. 44, 426–440.
    Ko, J., Zhang, C., Arac, D., Boucard, A.A., Brunger, A.T., and Südhof, T.C. (2009). Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. EMBO J. 28, 3244–3255.
    Kong, Y., Liang, X., Liu, L., Zhang, D., Wan, C., Gan, Z., and Yuan, L. (2015). High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson’s Disease Model. PLOS ONE 10, e0137432.
    Kost, T.A., Condreay, J.P., and Jarvis, D.L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.
    Krueger, D.D., Tuffy, L.P., Papadopoulos, T., and Brose, N. (2012). The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr. Opin. Neurobiol. 22, 412–422.
    Lacar, B., Young, S.Z., Platel, J.-C., and Bordey, A. (2010). Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Front. Neurosci. 4.43.
    Leparc, G.G., and Mitra, R.D. (2007). A sensitive procedure to detect alternatively spliced mRNA in pooled-tissue samples. Nucleic Acids Res. 35, e146.
    Li, Y., Wang, X., Guo, H., and Wang, S. (2004). Axonal transport of recombinant baculovirus vectors. Mol. Ther. 10, 1121–1129.
    Li, Y., Yang, Y., and Wang, S. (2005). Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp. Physiol. 90, 39–44.
    Lin, J.-J. (2009). dbcAMP誘導神經前驅細胞分化中鈣訊號和Akt去磷酸化之影響__臺灣博碩士論文知識加值系統.
    Lisé, M.-F., and El-Husseini, A. (2006). The neuroligin and neurexin families: from structure to function at the synapse. Cell. Mol. Life Sci. CMLS 63, 1833–1849.
    Liu, A., Zhou, Z., Dang, R., Zhu, Y., Qi, J., He, G., Leung, C., Pak, D., Jia, Z., and Xie, W. (2016a). Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. J. Cell Biol. 212, 449–463.
    Liu, M.-K., Lin, J.-Z., Jinn, T.-R., Chan, H.-L., and Wu, T.-Y. (2015). Identification of Rhopalosiphum Padi Virus 5’ Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry. Int. J. Mol. Sci. 16, 16053–16066.
    Liu, M.-K., Lin, J.-J., Chen, C.-Y., Kuo, S.-C., Wang, Y.-M., Chan, H.-L., and Wu, T.Y. (2016b). Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response. Int. J. Mol. Sci. 17. (6), 931.
    Makkonen, K.-E., Airenne, K., and Ylä-Herttulala, S. (2015). Baculovirus-mediated Gene Delivery and RNAi Applications. Viruses 7, 2099–2125.
    Mansouri, M., Bellon-Echeverria, I., Rizk, A., Ehsaei, Z., Cosentino, C.C., Silva, C.S., Xie, Y., Boyce, F.M., Davis, M.W., Neuhauss, S.C.F., et al. (2016). Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat. Commun. 7, ncomms11529.
    Maruyama, T., Kusakari, S., Sato-Hashimoto, M., Hayashi, Y., Kotani, T., Murata, Y., Okazawa, H., Oldenborg, P.-A., Kishi, S., Matozaki, T., et al. (2012). Hypothermia-induced tyrosine phosphorylation of SIRPα in the brain. J. Neurochem. 121, 891–902.
    McLean, P.J., Kawamata, H., and Hyman, B.T. (2001). Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104, 901–912.
    Mendivil-Perez, M., Soto-Mercado, V., Guerra-Librero, A., Fernandez-Gil, B.I., Florido, J., Shen, Y.-Q., Tejada, M.A., Capilla-Gonzalez, V., Rusanova, I., Garcia-Verdugo, J.M., et al. (2017). Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res.
    Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44, 257–289.
    Newell-Litwa, K.A. (2016). Breaking down to build up: Neuroligin’s C-terminal domain strengthens the synapse. J. Cell Biol. 212, 375–377.
    Nguyen, T., and Südhof, T.C. (1997). Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J. Biol. Chem. 272, 26032–26039.
    van Oers, M.M. (2011). Opportunities and challenges for the baculovirus expression system. J. Invertebr. Pathol. 107 Suppl, S3-15.
    Park, S.M., Jung, H.Y., Kim, T.D., Park, J.H., Yang, C.-H., and Kim, J. (2002). Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-synuclein, a molecular chaperone. J. Biol. Chem. 277, 28512–28520.
    Passarelli, A.L., and Guarino, L.A. (2007). Baculovirus late and very late gene regulation. Curr. Drug Targets 8, 1103–1115.
    Peixoto, R.T., Kunz, P.A., Kwon, H., Mabb, A.M., Sabatini, B.L., Philpot, B.D., and Ehlers, M.D. (2012). Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1. Neuron 76, 396–409.
    Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.
    Poulopoulos, A., Soykan, T., Tuffy, L.P., Hammer, M., Varoqueaux, F., and Brose, N. (2012). Homodimerization and isoform-specific heterodimerization of neuroligins. Biochem. J. 446, 321–330.
    Reese, M.G., Eeckman, F.H., Kulp, D., and Haussler, D. (1997). Improved splice site detection in Genie. J. Comput. Biol. J. Comput. Mol. Cell Biol. 4, 311–323.
    Roberts, L.O., and Groppelli, E. (2009). An atypical IRES within the 5’ UTR of a dicistrovirus genome. Virus Res. 139, 157–165.
    Rohrmann, G.F. (2013). Baculovirus Molecular Biology (Bethesda (MD): National Center for Biotechnology Information (US)).
    Rosales, C.R., Osborne, K.D., Zuccarino, G.V., Scheiffele, P., and Silverman, M.A. (2005). A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons. Eur. J. Neurosci. 22, 2381–2386.
    Royo, N.C., Vandenberghe, L.H., Ma, J.-Y., Hauspurg, A., Yu, L., Maronski, M., Johnston, J., Dichter, M.A., Wilson, J.M., and Watson, D.J. (2008). Specific AAV Serotypes Stably Transduce Primary Hippocampal and Cortical Cultures with High Efficiency and Low Toxicity. Brain Res. 1190, 15–22.
    Sara, Y., Mozhayeva, M.G., Liu, X., and Kavalali, E.T. (2002). Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses. J. Neurosci. Off. J. Soc. Neurosci. 22, 1608–1617.
    Sarkis, C., Serguera, C., Petres, S., Buchet, D., Ridet, J.-L., Edelman, L., and Mallet, J. (2000). Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc. Natl. Acad. Sci. U. S. A. 97, 14638–14643.
    Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M., and Greenberg, M.E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289.
    Smith, G.E., Summers, M.D., and Fraser, M.J. (1983). Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3, 2156–2165.
    Sung, L.-Y., Chen, C.-L., Lin, S.-Y., Li, K.-C., Yeh, C.-L., Chen, G.-Y., Lin, C.-Y., and Hu, Y.-C. (2014). Efficient gene delivery into cell lines and stem cells using baculovirus. Nat. Protoc. 9, 1882–1899.
    Suzuki, K., Hayashi, Y., Nakahara, S., Kumazaki, H., Prox, J., Horiuchi, K., Zeng, M., Tanimura, S., Nishiyama, Y., Osawa, S., et al. (2012). Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76, 410–422.
    Tani, H., Nishijima, M., Ushijima, H., Miyamura, T., and Matsuura, Y. (2001). Characterization of cell-surface determinants important for baculovirus infection. Virology 279, 343–353.
    Tani, H., Limn, C.K., Yap, C.C., Onishi, M., Nozaki, M., Nishimune, Y., Okahashi, N., Kitagawa, Y., Watanabe, R., Mochizuki, R., et al. (2003). In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses. J. Virol. 77, 9799–9808.
    Teng, C.-Y., Chang, S.-L., Tsai, M.-F., and Wu, T.-Y. (2013). Α-synuclein and β-synuclein enhance secretion protein production in baculovirus expression vector system. Appl. Microbiol. Biotechnol. 97, 3875–3884.
    Tenreiro, S., Eckermann, K., and Outeiro, T.F. (2014). Protein phosphorylation in neurodegeneration: friend or foe? Front. Mol. Neurosci. 7. 42.
    Thompson, S.R. (2012). So you want to know if your message has an IRES? Wiley Interdiscip. Rev. RNA 3, 697–705.
    Tsetsenis, T., Boucard, A.A., Araç, D., Brunger, A.T., and Südhof, T.C. (2014). Direct visualization of trans-synaptic neurexin-neuroligin interactions during synapse formation. J. Neurosci. Off. J. Soc. Neurosci. 34, 15083–15096.
    Unni, V.K., Weissman, T.A., Rockenstein, E., Masliah, E., McLean, P.J., and Hyman, B.T. (2010). In Vivo Imaging of α-Synuclein in Mouse Cortex Demonstrates Stable Expression and Differential Subcellular Compartment Mobility. PLOS ONE 5, e10589.
    Vandenbroucke, I.I., Vandesompele, J., Paepe, A.D., and Messiaen, L. (2001). Quantification of splice variants using real-time PCR. Nucleic Acids Res. 29(13), e68.
    Vivacqua, G., Casini, A., Vaccaro, R., Fornai, F., Yu, S., and D’Este, L. (2011). Different sub-cellular localization of alpha-synuclein in the C57BL\6J mouse’s central nervous system by two novel monoclonal antibodies. J. Chem. Neuroanat. 41, 97–110.
    Volpicelli-Daley, L.A., Luk, K.C., Patel, T.P., Tanik, S.A., Riddle, D.M., Stieber, A., Meaney, D.F., Trojanowski, J.Q., and Lee, V.M.-Y. (2011). Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death. Neuron 72, 57–71.
    Wang, D.C. (2008). Hybrid baculovirus–adeno-associated virus vectors for prolonged transgene expression in human neural cells. J. Neurovirol. 14, 563–568.
    Wang, C.-Y., and Wang, S. (2005). Adeno-Associated Virus Inverted Terminal Repeats Improve Neuronal Transgene Expression Mediated by Baculoviral Vectors in Rat Brain. Hum. Gene Ther. 16, 1219–1226.
    Wang, M., and Marín, A. (2006). Characterization and prediction of alternative splice sites. Gene 366, 219–227.
    Wang, C.-Y., Li, F., Yang, Y., Guo, H.-Y., Wu, C.-X., and Wang, S. (2006). Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy. Cancer Res. 66, 5798–5806.
    Wang, J., Li, B., Cai, C., Zhang, Y., Wang, S., Hu, S., Tian, X., and Zhang, M. (2007). Efficient transduction of spiral ganglion neurons in vitro by baculovirus vectors. Neuroreport 18, 1329–1333.
    Washbourne, P., and McAllister, A.K. (2002). Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566–573.
    Wu, T.-Y., Liono, L., Chen, S.-L., Chen, C.-Y., and Chao, Y.-C. (2000). Expression of highly controllable genes in insect cells using a modified tetracycline-regulated gene expression system. J. Biotechnol. 80, 75–83.
    Wu, Y., Teng, C., Chen, Y., Chen, S., Chen, Y., Lin, Y., and Wu, T. (2008). Internal ribosome entry site of Rhopalosiphum padi virus is functional in mammalian cells and has cryptic promoter activity in baculovirus-infected Sf21 cells. Acta Pharmacol. Sin. 29, 965–974.
    Yamagata, M., Sanes, J.R., and Weiner, J.A. (2003). Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632.
    Zahir, T., Chen, Y.F., MacDonald, J.F., Leipzig, N., Tator, C.H., and Shoichet, M.S. (2009). Neural stem/progenitor cells differentiate in vitro to neurons by the combined action of dibutyryl cAMP and interferon-gamma. Stem Cells Dev. 18, 1423–1432.
    Zanotto, P.M., Kessing, B.D., and Maruniak, J.E. (1993). Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J. Invertebr. Pathol. 62, 147–164.
    Zeitelhofer, M., Vessey, J.P., Thomas, S., Kiebler, M., and Dahm, R. (2009). Transfection of cultured primary neurons via nucleofection. Curr. Protoc. Neurosci. Chapter 4, Unit4.32.
    Zeng, J., Du, J., Zhao, Y., Palanisamy, N., and Wang, S. (2007). Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells Dayt. Ohio 25, 1055–1061.
    Zeng, J., Du, J., Lin, J., Bak, X.Y., Wu, C., and Wang, S. (2009). High-efficiency Transient Transduction of Human Embryonic Stem Cell–derived Neurons With Baculoviral Vectors. Mol. Ther. J. Am. Soc. Gene Ther. 17, 1585–1593.
    Zhang, Y., and Yu, L.-C. (2008). Single-cell microinjection technology in cell biology. BioEssays News Rev. Mol. Cell. Dev. Biol. 30, 606–610.

    QR CODE