簡易檢索 / 詳目顯示

研究生: 柯建呈
Ke, Jian-Cheng
論文名稱: 基於Duffing-Like模型與磁流變阻尼器之半主動結構減震設計與驗證
Development of semi-active control for vibration reduction of structural systems using Duffing-like model and magnetorheological damper
指導教授: 左培倫
Tso, Pei-Lum
口試委員: 林子剛
Lin, Tzu Kang
徐勝均
Xu, Sheng-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: Duffing-Like模型半主動控制磁流變阻尼器
外文關鍵詞: Duffing-Like model, semi-active, magnetorheological
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地處於板塊交界帶,地震發生頻繁,近年來臺南與花蓮也發生過地震造成重大傷害,地震造成的影響日漸受到重視,因此,本論文致力於結構物減震研究,希望減少地震造成的損壞,降低居民的生命財產威脅。
    結構控制技術目前主要分為三種:主動控制、被動控制、半主動控制,由於半主動控制比起被動控制多了適應性,又比主動控制多了安全性,且設備成本相對較低廉。因此本研究目標為替結構物設計一套有效的又節能的半主動減震結構系統,而半主動減震結構系統包含滑塊隔震模組與磁流變阻尼器。然而,文獻高引用率的限幅最佳化(Clipped optimal control)半主動控制法,雖然可以控制磁流變阻尼器減震,但是限幅最佳化法控制電壓不連續且無法進行細部追蹤,且磁流變阻尼器的非線性遲滯動態使得控制器設計不易,文獻常用的Bouc-wen模型為非連續、片段函數,限制了控制器發展。因此,本論文以先前實驗室團隊論文提出之連續、確定型、動態型之Duffing-Like模型作為磁流變阻尼器的數學模型,應用在半主動減震工程。
    本研究提出新的半主動控制器為能量最佳化控制法(Energy optimization control,簡寫EOC),希望解決文獻限幅最佳化法的缺點,並以數值模擬與全比例實驗驗證減震效果,最後利用模擬與實驗數據比較控制法的減震效果。由模擬與實驗結果指出,Duffing-like模型良好的描述磁流變阻尼器之動態,而能量最佳化控制法和限幅最佳化控制法皆可達到不錯的減震效果,但能量最佳化控制法不但有效減小結構物之位移,且相較於限幅最佳化控制法有較好的節能效果。期待日後可以將能量最佳化控制法廣泛運用在有遲滯現象的減震元件,有效解決遲滯減震元件之控制難題。


    In recent years, there are major disasters caused by earthquake in Tainan and Hualien. The disasters of earthquake has became increasingly important, therefore this study is about the vibration reduction of structural system by magnetorheological damper (MR damper).
    Structure control technology mainly divides into three types: active control, passive control, and semi-active control. Semi-active control is more adaptable than passive control, and is more reliable than active control, and the equipment of semi-active control is relatively inexpensive. The clipped-optimal control in literature can reduce the vibration, but its control voltage is not a continuous and smooth signal, and can not track in detail. However, the inherent nonlinear hysteresis dynamics of MR damper raises the challenges in modeling and control process. In literature, the Bouc-Wen model includes discontinuous, nondeterministic, and piecewise function render the system identification. In order to overcome the difficulties, the study introduces the Duffing-Like model which is proposed by the team of ACDT Lab.
    This study proposed a new semi-active control method which is energy optimization control (EOC) to improve the disadvantages of clipped-optimal control method, and do the numerical simulation and real experiment to verify the effect of vibration reduction of control methods. This paper verifies Duffing-Like model performed MR damper well and the effect of vibration reduction of structure system by numerical simulation and real experiment, then compares the effect of EOC method and clipped-optimal control. According to the data of simulation and experiment, we know that the EOC not only has good control effect but also has better control energy coefficient. Hope that EOC method can be used to any hysteresis system, and let the control of hysteresis systems simpler.

    誌謝 中文摘要 Abstract 目錄 圖目錄 表目錄 符號說明 第一章、緒論 .......................................1 1.1 文獻回顧 ....................................1 1.1.1 減震工程之結構設計 .........................2 1.1.2 磁流變阻尼器之介紹 .........................5 1.2 研究動機 ...................................11 1.3 研究目標 ...................................11 1.4 論文架構 ...................................12 第二章、磁流變阻尼器之半主動減震結構系統介紹 .........13 2.1 滑塊隔震模組之模型介紹 ......................13 2.2 磁流變阻尼器之模型介紹與應用 .................15 2.3 識別磁流變阻尼器之Duffing-Like模型參數 .......19 第三章、半主動控制系統設計 .........................24 3.1 限幅最佳化控制法之半主動控制設計 .............24 3.2 能量最佳化控制法之半主動控制設計 .............28 3.2.1 以最佳化控制法設計減震力之參考訊號 .........29 3.2.2 梯度動力學法 .............................30 第四章、實驗設備介紹 ...............................33 4.1 振動平台系統 ...............................34 4.2 實驗儀器 ...................................35 第五章、模擬與實驗結果 .............................40 5.1 半主動減震結構系統之模擬驗證 ................40 5.2 半主動減震結構系統之實驗驗證 ................57 5.3 模擬結果分析 ...............................73 5.4 實驗結果分析 ...............................76 第六章、結論及未來工作 .............................78 6.1 結論 ......................................78 6.2 未來工作 ...................................79 參考資料 ..........................................80 附錄A .............................................84

    1. M. Zapateiro, H.R. Karimi, N. Luo, B.F. Spencer, Real‐time hybrid testing of semiactive control strategies for vibration reduction in a structure with MR damper. Structural Control and Health Monitoring, 2010. 17(4): pp. 427-451.
    2. S.Y. Chu, L.Y. Lu, and S.W. Yeh, Real‐time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table. Structural Control and Health Monitoring, 2018. 25(3):e2124.
    3. S. Park, Analytical modeling of viscoelastic dampers for structural and vibration control. International Journal of Solids and Structures, 2001. 38(44-45): pp. 8065-8092.
    4. M.J. Asl, M. Rahman, and A. Karbakhsh, Numerical Analysis of Seismic Elastomeric Isolation Bearing in the Base-Isolated Buildings. Open Journal of Earthquake Research, 2014. 3(01): pp. 1-4.
    5. J.W. Hu, Response of seismically isolated steel frame buildings with sustainable lead-rubber bearing (LRB) isolator devices subjected to near-fault (NF) ground motions. Sustainability, 2014. 7(1): pp. 111-137.
    6. S. Okamura and S. Fujita, Motion analysis of pendulum type isolation systems during earthquakes (Probabilistic study of isolation performance of base isolated structure considering characteristic dispersion of pendulum type isolation systems). Journal of pressure vessel technology, 2007. 129(3): pp. 507-515.
    7. P.Y. Lin, P.N. Roschke, J.X. Luo, L.L. Zhong, C.P. Chang, Semi-Active Control of a Structure with an MR Damper. National Center for Research on Earthquake Engineering, 2000.
    8. B. Spencer Jr, S.J. Dyke, M.K. Sain, J. Carlson, Phenomenological model for magnetorheological dampers. Journal of engineering mechanics, 1997. 123(3): pp. 230-238.
    9. S. Dyke, B.F. Spencer Jr, M.K. Sain, J. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction. Smart materials and structures, 1996. 5(5): pp. 565-575.
    10. S. Sun, D.H. Ning, J. Yang, H. Du, S.W. Zhang, W.H. Li, M. Nakano, Development of an MR seat suspension with self-powered generation capability. Smart Materials and Structures, 2017. 26(8): 085025.
    11. Q. Fu, D.H. Wang, L. Xu, G. Yuan, A magnetorheological damper-based prosthetic knee (MRPK) and sliding mode tracking control method for an MRPK-based lower limb prosthesis. Smart Materials and Structures, 2017. 26(4): 045030.
    12. A. As' Arry, F. Naseer, T. Rahman, K. Rezali, M. Zain, Semi-active suspension control for formula SAE car using magneto-rheological fluid. in Computer Applications & Industrial Electronics (ISCAIE), 2017 IEEE Symposium on. 2017. Pulau Langkawi, Malaysia.
    13. H. Iemura and M.H. Pradono, Passive and semi‐active seismic response control of a cable‐stayed bridge. Structural Control and Health Monitoring, 2002. 9(3): pp. 189-204.
    14. S.F. Ali and A. Ramaswamy, Testing and modeling of MR damper and its application to SDOF systems using integral backstepping technique. Journal of Dynamics Systems, Measurement, and Control, 2009. 131(2): 021009.
    15. L. Li, G. Song, and J. Ou, Nonlinear structural vibration suppression using dynamics neural network observer and adaptive fuzzy sliding mode control. Journal of Vibration and Control, 2010. 16(10): pp. 1503-1526.
    16. Z.S. Huang, C. Wu, and D.S. Hsu, Semi-active fuzzy control of mr damper on structures by genetic algorithm. Journal of Mechanics, 2009. 25(1): pp. N1-N6.
    17. L.Y. Lu, C.C. Lin, G.L. Lin, C.Y. Lin, Experiment and analysis of a fuzzy-controlled piezoelectric seismic isolation system. Journal of Sound and Vibration, 2010. 329(11): pp. 1992-2014.
    18. T.Y. Cheng, Using Duffing Equation to Model Magnetorheological Damper Dynamics. Master thesis, Power Mechanical Engineering, National Tsing Hua University, 2014.
    19. Y.C. Chien, Identification of Hysteresis Dynamics Using Duffing-Like Model. Master thesis, Power Mechanical Engineering, National Tsing Hua University, 2016.
    20. I. Kovacic, M. J. Brennan. (2011). The Duffing equation: nonlinear oscillators and their behaviour. John Wiley & Sons.
    21. J.Y. Tu, T.Y. Cheng, and P.Y. Lin, Using Duffing Equation to Model Magnetorheological Damper Dynamics. in 6th World Conference on Structural Control and Monitoring(6WCSCM)2014: Barcelona, Spain.
    22. G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback control of dynamics systems. Vol. 3. 1994: Addison-Wesley Reading, MA.
    23. H.P. Yeh, Development of Magnetorheological damper based on Duffing-like model for semi-active vibration reduct. Master thesis, Power Mechanical Engineering, National Tsing Hua University, 2017.
    24. Y. Zhang, Y. Wang, Y. Yin, H. Tan, Q. Zeng, Theory and substantiation of z0g1 controller conquering singularity problem of output tracking for a class of nonlinear system. in Computational Science and Engineering (CSE), 2014 IEEE 17th International Conference on. 2014. Qingdao, China.
    25. Y. Zhang, Y. Wang, Y. Yin, L. Jin, D. Chen, ZG controllers for output tracking of nonlinear mass-spring-damper mechanical system with division-by-zero problem solved. in Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on. 2013. IEEE.

    QR CODE