研究生: |
陳紹文 Shao-Wen Chen |
---|---|
論文名稱: |
微小化毛細泵吸環路應用於電子構裝散熱之設計研發與效能分析 Design and Performance Analysis of Miniature Capillary-Pumped-Loop Applied to Electronic Cooling System |
指導教授: |
林唯耕
Wei-Keng Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 毛細泵吸環路 、毛細力 、雙相流 、相變化 、冷卻 、熱傳 、電子構裝散熱系統 、迴路熱管 |
外文關鍵詞: | capillary pumped loop, capillary force, two-phase flow, phase change, cooling, heat transfer, electronic cooling system, loop heat pipes |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
毛細泵吸環路 (CPL) 是於1960年代中期由F.J. Stenger 先生在 NASA/Lewis發明,它是一個高效率的雙相移熱工具。CPL利用工作流體的相變化將熱由蒸發器傳遞至冷凝器,並使用毛細力作為驅動力而完成的循環迴路。由於CPL不需要額外的機械功驅動,以往是應用於太空中飛行器內高熱元件的熱控制。本篇研究即是將CPL應用至地表的電子構裝散熱系統,採用的是水平擺設不藉助重力效應(0-g環境),並且將原本大型環路尺寸縮小至微小化的尺寸(mm-cm)。
我們的微小化CPL製作材料是採用鋁金屬;其蒸發器是一個30X40X10mm的立方體;蒸汽道與冷凝液體道分別是約360/80mm長的圓管,內徑皆為3.5mm。在冷凝器部分的冷卻方式我們是採取空氣強制對流冷卻,因為這是目前電子構裝系統內最普遍也最方便的冷卻方式。測試結果顯示出我們的微小化毛細泵吸環路可以穩定移熱25W並且保持熱源溫度約100oC左右,而其熱阻值大約為2.6 K/W。本論文內將提到我們的微小化CPL在不同的操作模式下的反應特性,包括:啟動時間、穩態表現、暫態表現、等。本文中並將探討在環路操作時的特殊現象,如:溫度過射現象與溫度遲滯現象等。
Abstract
The capillary pumped loop (CPL) was first invented by F. J. Stenger in the mid-1960’s at NASA/Lewis. CPL is a high efficiency two-phase heat transfer device using the phase change of working fluid to transport heat from evaporator to condenser; it’s a cyclic circulation pumped by capillary force. Since CPL doesn’t need any other mechanical force such as pump, it might be used to do the thermal management of high power electronic component on spacecraft. This study presents the application of CPL to electronic cooling system on the ground with a horizontal position (0-g environment) and scale down the whole device to the miniature size (range from mm to cm).
This miniature-CPL is made of aluminum with the shape of evaporator be 10x30x40 mm cubic; the vapor/liquid lines are smooth round tubes of 360/80 mm in length and 3.5mm in both inner diameter. The cooling of condenser is achieved by forced convection because that’s the most common way of current electronic cooling system. Testing results show that the miniature-CPL could remove heat 25W in steady state and keep the heat source temperature under 100oC. The thermal resistance of this CPL is about 2.6K/W. Operating characteristics under various conditions including start-up time, steady state performance, transient phenomena in different heat loads, step-up heat loads and low power heat load operating are presented. Peculiar behaviors such as the hysteresis and overshoot of the temperature are also observed in this study.
References
【1】 林唯耕, ”CPL原型環路之設計與測試”, 行政院國家科學委員會專題研究計畫果報告,NSC82-F-SP-007-06,1993
【2】 林唯耕, 白寶實, ”CPL原型環路蒸發部之數值模擬熱傳現象”, 行政院國家科學委員會專題研究計畫果報告, NSC82-F-SP-007-06, 1993
【3】 莊文瑞, ”毛細泵吸環路應用於電子零件散熱之可行性研究”, 國立清華大學碩士論文, 1997
【4】 F.J. Stenger, NASA TM X-1310, 1966
【5】 Maidanik, Y.F., Vershinin, Kholodov, V., and J. Dolgirev, “Heat Transfer Apparatus”, U.S. Patent No.4515209, 1985
【6】 AAVID Engineering inc., ”OASIS Heat Dissipation System Technical Data and Specifications”, 1993
【7】 AAVID Engineering inc., ”AAVID Engineering Demos Fluid Cooling System for Notebook Computer”, 1993
【8】 I. Muraoka, F.M. Ramos and V.V. Vlassov, “Experimental and Theoretical Investigation of a Capillary Pumped Loop with a Porous Element in the Condenser”, Int. Comm. Heat Mass Transfer, Vol.25 No.8, 1998
【9】 C. Figus, Y. Le Bray, S. Boris and M. Prat, “Heat and Mass Transfer with Phase Change in a Porous Structure Partially Heated: Continum Model and Pore Network Simulation”, Int. J. of Heat and Mass Transfer 42, 1999
【10】 Q. Liao and T.S. Zhao, “Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block”, J. of Thermophysics and Heat Transfer, Vol.13 No.1, 1999
【11】 Jentung Ku, “Operating Characteristic of Loop Heat Pipes”, SAE Technical Paper Series, 1999-01-2007, 1999
【12】 B. Mo, M.M. Ohadi, S.V. Dessiatoun, and K.H. Cheung, “Startup Time Reduction in an Electrohydrodynamically Enhanced Capillary Pumped Loop”, J. of Thermophysics and Heat Transfer, Vol.13 No.1, 1999
【13】 B. Mo, M.M. Ohadi, S.V. Dessiatoun, and K.R. Wrenn, “Capillary Pumped-Loop Thermal Performance Improvement with Electrohydrodynamic Technique”, J. of Thermophysics and Heat Transfer, Vol.14 No.1, 2000
【14】 Jeffery Kirshberg, Kirk Yerkes, Dave Trebotich and Dorian Liepmann, “Cooling Effect of a MEMS Based Micro Capillary Pumped Loop for Chip-Level Temperature Control”, ASME MEMS-Vol.2, 2000
【15】 P.J. Brennan and E.J. Kroliczek, “Heat Pipe Design Handbook”, NASA/GSFC, 1979
【16】 S.W. Chi, “Heat Pipe Theory and Practice”, Hemisphere Publishing Corp., 1976
【17】 Kenichi Namba, Naoki Kimura, Jun Nickawa, Yuichi Kimura and Nobuyuki Hashimoto, “Heat-Pipes for Electronic Devices Cooling and Evaluation of Their Thermal Performance”, Intersociety Conference on Thermal Phenomena, IEEE, 1998
【18】 Hong Xie, Andre Ali and Rakesh Bhatia, “The Use of Heat Pipes in Personal Computer”, Intersociety Conference on Thermal Phenomena, IEEE, 1998