簡易檢索 / 詳目顯示

研究生: 林宗儒
論文名稱: 氧化鈰、氧化鉍、氧化鐵三種晶種層對鐵酸鉍鐵電薄膜之影響
指導教授: 胡塵滌
Hu, Chen-Ti
呂正傑
Leu, Ching-Chich
口試委員: 胡塵滌
簡昭欣
呂正傑
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 212
中文關鍵詞: 鐵酸鉍鐵電薄膜晶種層
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用溶膠凝膠法(Sol-gel method),製備複鐵式鐵酸鉍(BiFeO3)薄膜。鐵酸鉍薄膜的鐵電與鐵磁性質耦合形成磁電效應,使材料在電能與磁能間轉換,為新興熱門研究,但鐵酸鉍薄膜磁性質較差,當前文獻指出,鐵酸鉍薄膜在室溫下具有較低的漏電流阻抗,使磁電耦合效應遭受限制無法突破。針對於此本論文以植入氧化鈰、氧化鉍、氧化鐵三種不同晶種層,並分別在鐵酸鉍薄膜的下表面、上表面與上下表面均植入晶種層,探討晶種層對於鐵酸鉍複合薄膜結晶性、鐵電性、介電性、漏電流及磁性質之影響。
    實驗結果得知,植入適當晶種層可改善鐵酸鉍薄膜在鉑金底電極上不易結晶的問題,可降低鐵酸鉍薄膜結晶溫度;二次離子質譜儀(SIMS),分析發現植入氧化鈰晶種層於B*FO薄膜及鉑金底電極之間,可避免單獨B*FO薄膜中鉍元素擴散進入底電極。植入氧化鈰晶種層於底層、上表面、三明治結構的複合薄膜皆可將單獨鐵酸鉍薄膜的漏電流降低至少一個次方約為10-8至10-7 A/cm2;電場-電流密度分析,鐵酸鉍及其複合薄膜皆呈現空間電荷限制傳導機制(SCLC mechanism),植入各晶種層後皆降低單獨B*FO薄膜的轉換電場(Etr,Ohmic conduction→SCLC)及Trap-filled limited電場(ETFL),應與薄膜中載子濃度及晶粒尺寸有關。複合薄膜電滯曲線中的殘留極化量(2Pr)印證X光繞射推導之結晶優選方向,並將主導各複合薄膜鐵電性質,亦使鐵電性質表現相雷同;複合薄膜的矯頑電場(2Ec)會因鐵電域壁移動受到晶粒尺寸、空間電荷、帶電缺陷限制而改變。低電場量測時,BiOx-B*FO複合薄膜有較高的鐵電極化量2Pr (4.96μC/cm2 at 250kV/cm),應與BiOx晶種層幫助BFO(110)面成長有關;三明治結構CeO2-B*FO-CeOx複合薄膜由於漏電流相當低,外加電場至700kV/cm,依然有飽和的電滯曲線,使鐵酸鉍複合薄膜鐵電性質明顯展現(15.44μC/cm2)。從介電常數與頻率分析,底層植入氧化鈰、氧化鉍晶種層可使BFO薄膜介電常數增大約兩倍;同時該薄膜具有較低的ETFL電場,推測是空間電荷所造成介電發散特性。植入晶種層後可改善鐵酸鉍薄膜磁性質,CeOx-BFO薄膜平行膜面所量測磁滯曲線中(2kOe)的飽和磁化量(2Ms)高達15.43emu/cm3、殘留磁化量(2Mr)為1.44emu/cm3,推測是Fe2+比例增加及螺旋排列的磁矩間夾角改變,造成淨磁化量增加。Fe2O3-BFO-FeOx薄膜平行膜面量測(2kOe)的飽和磁化量(2Ms)高達103.2emu/cm3、殘留磁化量(2Mr)為5.88emu/cm3,推測因具有α-Fe2O3及氧空缺(Vo..)。


    第一章 緒論 1 1-1前言 1 1-2研究動機與方向 2 第二章 文獻回顧 3 2-1鐵電薄膜簡介 3 2-1-1鐵電薄膜演進 3 2-1-2鐵電材料結構 3 2-1-3鐵電特性 4 2-2極化原理簡介 6 2-2-1極化現象與介電常數 6 2-2-2極化機制 6 2-3漏電流機制 7 2-3-1能障限制(Barrier limited) 7 2-3-1-1蕭基特發射(Schottky emission) 7 2-3-1-2穿遂效應(Tunneling effect) 7 2-3-2本體限制(Bulk limited) 8 2-3-2-1空間電荷限制傳導(Space charge limited conduction),SCLC 8 2-3-2-2離子傳導(Ionic condution) 10 2-3-2-3普爾-夫倫克爾放射(Pool-Frenkel emission) 10 2-3-2-4本質傳導(Intrinsic condution) 11 2-4磁性原理簡介 11 2-4-1磁性的來源 11 2-4-2磁性物質的分類 12 2-4-3磁性特徵溫度 14 2-4-3-1居禮溫度 14 2-4-3-2尼爾溫度 14 2-4-4磁滯曲線 15 2-5鐵酸鉍系統(BiFeO3) 15 2-5-1鐵酸鉍的結構與性質 15 2-5-2鐵酸鉍研究文獻回顧 17 2-5-2-1鐵酸鉍植入晶種層(緩衝層)的研究文獻 19 第三章 實驗步驟 35 3-1基板的製備 35 3-1-1製備擴散阻絕層及黏著層 35 3-1-2製備鉑金下電極 35 3-2鐵酸鉍及晶種層薄膜的製備 36 3-2-1實驗藥品 36 3-2-2製備鐵酸鉍BFO溶膠 36 3-2-3製備晶種層溶膠 37 3-2-4鐵酸鉍與晶種層薄膜的鍍製 38 3-2-5鐵酸鉍、複合薄膜、晶種層薄膜的熱處理 39 3-3鐵電薄膜特性分析 39 3-3-1物性分析 39 3-3-2電性分析 40 3-3-3 VSM磁性分析(Vibrating Sample Magnetometer) 41 第四章 結果與討論 45 4-1化學成份分析EDS 45 4-2 SIMS成份縱深分析 45 4-3 XRD晶體結構分析 46 4-3-1晶種層薄膜之XRD分析 47 4-3-2 BFO、B*FO薄膜之XRD分析 47 4-3-3底層植入不同晶種層的BFO、B*FO複合薄膜之XRD分析 48 4-3-3-1氧化鈰晶種層複合薄膜之XRD分析 48 4-3-3-2氧化鉍晶種層複合薄膜之XRD分析 49 4-3-3-3氧化鐵晶種層複合薄膜之XRD分析 50 4-3-4上表面植入不同晶種層的BFO、B*FO複合薄膜之XRD分析 50 4-3-5各種三明治結構的BFO、B*FO複合薄膜之XRD分析 51 4-3-6薄膜X光繞射結晶優選方向與鐵電特性間之關係分析 51 4-4表面微觀結構及橫截面分析(SEM) 52 4-4-1晶種層薄膜表面形貌分析 52 4-4-2 BFO、B*FO薄膜表面及橫截面形貌分析 53 4-4-3底層植入不同晶種層的BFO、B*FO複合薄膜表面及橫截面形貌 53 4-4-3-1氧化鈰晶種層複合薄膜之形貌分析 53 4-4-3-2氧化鉍晶種層複合薄膜之形貌分析 54 4-4-3-3氧化鐵晶種層複合薄膜之形貌分析 55 4-4-4上表面植入不同晶種層的BFO、B*FO複合薄膜表面及橫截面形貌56 4-4-5各種三明治結構的BFO、B*FO複合薄膜表面及橫截面形貌分析 57 4-4-5-1 氧化鈰三明治結構之形貌分析 57 4-4-5-2 氧化鉍三明治結構之形貌分析 58 4-4-5-3 氧化鐵三明治結構之形貌分析 59 4-5電流密度量測 59 4-5-1晶種層薄膜之電流密度分析 60 4-5-2 BFO、B*FO薄膜之電流密度分析 60 4-5-3底層植入不同晶種層的BFO、B*FO複合薄膜之電流密度分析 61 4-5-3-1氧化鈰晶種層複合薄膜之電流密度分析 61 4-5-3-2氧化鉍晶種層複合薄膜之電流密度分析 63 4-5-3-3氧化鐵晶種層複合薄膜之電流密度分析 64 4-5-4上表面植入不同晶種層的BFO、B*FO複合薄膜之電流密度分析 65 4-5-5各種三明治結構的BFO、B*FO複合薄膜之電流密度分析 66 4-5-5-1 氧化鈰三明治結構之電流密度分析 66 4-5-5-2 氧化鉍三明治結構之電流密度分析 67 4-5-5-3 氧化鐵三明治結構之電流密度分析 67 4-6鐵電特性量測 68 4-6-1 BFO、B*FO薄膜之鐵電特性 68 4-6-2底層植入不同晶種層的BFO、B*FO複合薄膜之鐵電特性 69 4-6-2-1氧化鈰晶種層複合薄膜之鐵電特性 69 4-6-2-2氧化鉍晶種層複合薄膜之鐵電特性 70 4-6-2-3氧化鐵晶種層複合薄膜之鐵電特性 71 4-6-3上表面植入不同晶種層的BFO、B*FO複合薄膜之鐵電特性 72 4-6-4各種三明治結構的BFO、B*FO複合薄膜之鐵電特性 73 4-6-4-1三明治結構的BFO複合薄膜之鐵電特性 73 4-6-4-2三明治結構的B*FO複合薄膜之鐵電特性 74 4-7介電特性量測 74 4-7-1 BFO、B*FO薄膜之介電特性 75 4-7-2底層植入不同晶種層的BFO、B*FO複合薄膜之介電特性 75 4-7-2-1氧化鈰晶種層複合薄膜之介電特性 75 4-7-2-2氧化鉍晶種層複合薄膜之介電特性 76 4-7-2-3氧化鐵晶種層複合薄膜之介電特性 77 4-7-3上表面植入不同晶種層的BFO、B*FO複合薄膜之介電特性 77 4-7-4各種三明治結構的BFO、B*FO複合薄膜之介電特性 78 4-7-4-1氧化鈰三明治結構之介電特性 78 4-7-4-2氧化鉍三明治結構之介電特性 79 4-7-4-3氧化鐵三明治結構之介電特性 79 4-8磁性分析 80 4-8-1 BFO、B*FO薄膜的磁性分析 80 4-8-2底層植入不同晶種層的BFO、B*FO複合薄膜之磁性分析 80 4-8-2-1氧化鈰晶種層複合薄膜之磁性 80 4-8-2-2氧化鉍晶種層複合薄膜之磁性 81 4-8-2-3氧化鐵晶種層複合薄膜之磁性 81 4-8-3上表面植入不同晶種層的BFO、B*FO複合薄膜之磁性分析 82 4-8-4各種三明治結構的BFO、B*FO複合薄膜之磁性分析 82 第五章 結論 203 參考文獻 206

    [1] 陳瀅如, 添加微細粉對鈦酸鉛鍍膜製程與特性之研究: 清華大學碩士論文, 1998.
    [2] 鄭晃忠 and 史德智, 極大型機鐵電路之鐵電材料: 電子月刊 5, 1999.
    [3] 陳銘森, 鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究: 清華大學博士論文, 1996.
    [4] Y. H. Xu, Ferroelectric Materials and Their Application. NewYork: North-Holland, 1991.
    [5] 江長凌, 林煥祐, and 朱智謙, 半導體製程中高介電(High K)材料的介紹: 台灣大學化研所.
    [6] 鍾為烈, 鐵電體物理學: 科學出版社, 1996.
    [7] M. E. Lines and A. M. Glass, Principle and applications of ferroelectrics and related materials. New York: Oxford University press, 2001.
    [8] 鐘金峰, Preparation of BiFeO3 thin films by chemical solution deposition method: 清華大學碩士論文 2006.
    [9] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications 1990.
    [10] 李雅明, 固態電子學: 全華科技, 1995.
    [11] 吳朗, 電子陶瓷-介電: 全新資訊圖書, 1994.
    [12] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd ed. New York: John Wiley and Sons, 1976.
    [13] M. Ohring, The Materials Science of Thin Films: Academic Press, 1992.
    [14] D. Ivanov, M. Caron, L. Ouellet, S. Blain, N. Hendricks, and J. Currie, "STRUCTURAL AND DIELECTRIC-PROPERTIES OF SPIN-ON BARIUM-STRONTIUM TITANATE THIN-FILMS," Journal of Applied Physics, vol. 77, pp. 2666-2671, Mar 1995.
    [15] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era: Process technology: Lattice Press, 2000.
    [16] M. A. Lampert, "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps," Physical Review, vol. 103, pp. 1648-1656, 1956.
    [17] W. H. Han, X. K. Chen, and E. Q. Xie, "Modified space-charge-limited current behavior in pulsed laser deposited (Ba,Sr)TiO3 thin films," Journal of Alloys and Compounds, vol. 463, pp. 25-29, 2008.
    [18] J. G. Wu, J. Wang, D. Q. Xiao, and J. G. Zhu, "Resistive hysteresis in BiFeO3 thin films," Mater. Res. Bull., vol. 46, pp. 2183-2186, Nov 2011.
    [19] P. K. Kalita, B. K. Sarma, and H. L. Das, "Space charge limited conduction in CdSe thin films," Bull. Mat. Sci., vol. 26, pp. 613-617, Oct 2003.
    [20] T. P.-c. Juan, S.-m. Chen, and J. Y.-m. Lee, "Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53,Ti0.47)O3 thin films," Journal of Applied Physics, vol. 95, pp. 3120-3125, 2004.
    [21] Ş. Aydoğan, Ü. İncekara, A. R. Deniz, and A. Türüt, "Extraction of electronic parameters of Schottky diode based on an organic Indigotindisulfonate Sodium (IS)," Solid State Communications, vol. 150, pp. 1592-1596, 2010.
    [22] A. Laha and S. B. Krupanidhi, "Leakage current conduction of pulsed excimer laser ablated BaBi2Nb2O9 thin films," Journal of Applied Physics, vol. 92, pp. 415-420, Jul 2002.
    [23] 孫海濤, 奈米複合材料PANI/TiO2之電性分析: 中原大學碩士論文, 2007.
    [24] C. D. Child, "Discharge From Hot CaO," Physical Review (Series I), vol. 32, pp. 492-511, 1911.
    [25] W. Shockley and R. C. Prim, "Space-Charge Limited Emission in Semiconductors," Physical Review, vol. 90, pp. 753-758, 1953.
    [26] K. Charles, Introduction to solid state physics, 7th ed. New York: John Wilry & Sons, 1996.
    [27] S. Chikazumi著, 張煦, and 李學養合譯, 磁性物理學. 臺北市: 聯經出版事業公司, 1982.
    [28] 李景明,張慶瑞, 磁性技術手冊: 台灣磁性技術協會, 2002.
    [29] J. A. C. Bland and B. Heinrich, Ultrathin Magnetic Structure I Springer-Verlag, 1994.
    [30] 江明彥, Synthesis and Magnetic Investigation of NiO/NiFe2O4 Nanocomposites: 南台科技大學碩士論文, 2005.
    [31] Y. Wu, J.-g. Wan, C. Huang, Y. Weng, S. Zhao, J.-m. Liu, and G. Wang, "Strong magnetoelectric coupling in multiferroic BiFeO3-Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition," Applied Physics Letters, vol. 93, pp. 192915-3, 2008.
    [32] S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y. H. Chu, C. H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager, Iii, and R. Ramesh, "Photovoltaic effects in BiFeO3," Applied Physics Letters, vol. 95, pp. 062909-3, 2009.
    [33] D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, "Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals," Physical Review B, vol. 76, p. 024116, 2007.
    [34] H. Schmid, "Die synthese von boraziten mit hilfe chemischer transportreaktionen," Journal of Physics and Chemistry of Solids, vol. 26, pp. 973-976, 1965.
    [35] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures," Science, vol. 299, pp. 1719-1722, March 14, 2003 2003.
    [36] G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., vol. 21, pp. 2463-2485, Jun 2009.
    [37] I. Sosnowska, T. Peterlinneumaier, and E. Steichele, "SPIRAL MAGNETIC-ORDERING IN BISMUTH FERRITE," Journal of Physics C-Solid State Physics, vol. 15, pp. 4835-4846, 1982.
    [38] Y. H. Chu et. al., Mater. Today, 2007.
    [39] C. Ederer and N. A. Spaldin, "Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite," Physical Review B, vol. 71, Feb 2005.
    [40] M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, "Specific Features of BiFeO3 Formation in a Mixture of Bismuth(III) and Iron(III) Oxides," Russian Journal of General Chemistry, vol. 73, pp. 1676-1680, 2003.
    [41] R. B. Fischer and J. P. Ellinger, "A REPLICA TECHNIQUE IN THE STUDY OF CHEMICAL PRECIPITATION PROCESSES," Journal of Applied Physics, vol. 24, pp. 1051-1053, 1953.
    [42] J. R. Teague, R. Gerson, and W. J. James, "Dielectric hysteresis in single crystal BiFeO3," Solid State Communications, vol. 8, pp. 1073-1074, 1970.
    [43] A. Z. Simoes, A. H. M. Gonzalez, L. S. Cavalcante, C. S. Riccardi, E. Longo, and J. A. Varela, "Ferroelectric characteristics of BiFeO3 thin films prepared via a simple chemical solution deposition," Journal of Applied Physics, vol. 101, pp. 074108-6, 2007.
    [44] D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, "Epitaxially grown la-modified BiFeO3 magnetoferroelectric thin films," Applied Physics Letters, vol. 86, May 2005.
    [45] J. Wu, G. Kang, and J. Wang, "Electrical behavior and oxygen vacancies in BiFeO3/[(Bi1/2Na1/2)0.94Ba0.06TiO3 ]thin film," Applied Physics Letters, vol. 95, pp. 192901-3, 2009.
    [46] K. Y. Yun, M. Noda, and M. Okuyama, "Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition," Applied Physics Letters, vol. 83, pp. 3981-3983, 2003.
    [47] R. Ueno, S. Okaura, H. Funakubo, and K. Saito, "Crystal structure and electrical properties of epitaxial BiFeO3 thin films grown by metal organic chemical vapor deposition," Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett., vol. 44, pp. L1231-L1233, 2005.
    [48] Y. H. Lee, J. M. Wu, Y. C. Chen, Y. H. Lu, and H. N. Lin, "Surface chemistry and nanoscale characterizations of multiferroic BiFeO3 thin films," Electrochem. Solid State Lett., vol. 8, pp. F43-F46, 2005.
    [49] Y. Wang, Z. Li, Y. H. Lin, and C. W. Nan, "Magnetic-electric behaviors in BiFeO3 films grown on LaNiO3-buffered Si substrate," Journal of Applied Physics, vol. 106, Oct 2009.
    [50] R. Y. Zheng, X. S. Gao, Z. H. Zhou, and J. Wang, "Multiferroic BiFeO3 thin films deposited on SrRuO3 buffer layer by rf sputtering," Journal of Applied Physics, vol. 101, p. 054104, 2007.
    [51] R. Ranjith, B. Kundys, and W. Prellier, "Periodicity dependence of the ferroelectric properties in BiFeO3/SrTiO3 multiferroic superlattices," Applied Physics Letters, vol. 91, pp. 222904-3, 2007.
    [52] W. Sakamoto, H. Yamazaki, A. Iwata, T. Shimura, and T. Yogo, "Synthesis and characterization of BiFeO3-PbTiO3 thin films through metalorganic precursor solution," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., vol. 45, pp. 7315-7320, Sep 2006.
    [53] X. D. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, "Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3," Applied Physics Letters, vol. 86, Feb 2005.
    [54] Y. W. Li, J. L. Sun, J. Chen, X. J. Meng, and J. H. Chu, "Structural, ferroelectric, dielectric, and magnetic properties of BiFeO3/Pb(Zr0.5Ti0.5)O3 multilayer films derived by chemical solution deposition," Applied Physics Letters, vol. 87, pp. 182902-3, 2005.
    [55] J. G. Wu and J. Wang, "Improved ferroelectric behavior in (110) oriented BiFeO3 thin films," Journal of Applied Physics, vol. 107, Feb 2010.
    [56] Y. H. Lee, J. M. Wu, Y. L. Chueh, and L. J. Chou, "Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current," Applied Physics Letters, vol. 87, Oct 2005.
    [57] A. Huang and S. R. Shannigrahi, "Effect of bottom electrode and resistive layer on the dielectric and ferroelectric properties of sol–gel derived BiFeO3 thin films," Journal of Alloys and Compounds, vol. 509, pp. 2054-2059, 2011.
    [58] D. H. Li, X. Q. Sun, X. H. Chuai, Z. F. Wu, Z. J. Cao, Y. F. Yan, and D. M. Zhang, "Enhanced ferro-and piezoelectric properties of a sol-gel derived BiFe0.95Mn0.05O3 thin film on Bi2O3-buffered Pt/Ti/SiO2/Si substrate," J. Cryst. Growth, vol. 338, pp. 85-90, Jan 2012.
    [59] P. Yang, K. M. Kim, Y. G. Joh, D. H. Kim, J. Y. Lee, J. Zhu, and H. Y. Lee, "Effect of BaTiO3 buffer layer on multiferroic properties of BiFeO3 thin films," Journal of Applied Physics, vol. 105, Mar 2009.
    [60] W. Yunyi, Z. Duanming, Y. Jun, and W. Yunbo, "Effect of Bi2O3 seed layer on crystalline orientation and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by rf-magnetron sputtering method," Journal of Applied Physics, vol. 105, p. 061613, 2009.
    [61] J. Wu, G. Kang, H. Liu, and J. Wang, "Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na1/2)TiO3 lead-free bilayered thin films," Applied Physics Letters, vol. 94, p. 172906, 2009.
    [62] J. Liu, M. Y. Li, L. Pei, B. F. Yu, D. Y. Guo, and X. Z. Zhao, "Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition," J. Phys. D-Appl. Phys., vol. 42, Jun 2009.
    [63] A. Li, D. Wu, H. Ling, T. Yu, M. Wang, X. Yin, Z. Liu, and N. Ming, "Effect of excess bismuth on the microstructures and electrical properties of strontium bismuth tantalate (SBT) thin films," Thin Solid Films, vol. 375, pp. 215-219, 2000.
    [64] Y. F. Qiu, D. F. Liu, J. H. Yang, and S. H. Yang, "Controlled synthesis of bismuth oxide nanowires by an oxidative metal vapor transport deposition technique," Adv. Mater., vol. 18, pp. 2604-+, Oct 2006.
    [65] A. Lahmar, K. Zhao, S. Habouti, M. Dietze, C. H. Solterbeck, and M. Es-Souni, "Off-stoichiometry effects on BiFeO3 thin films," Solid State Ionics, vol. 202, pp. 1-5, 2011.
    [66] J. Wu, J. Wang, D. Xiao, and J. Zhu, "Compositionally graded bismuth ferrite thin films," Journal of Alloys and Compounds, vol. 509, pp. L319-L323, 2011.
    [67] Y. Wang, "A large polarization in Ce-modified bismuth ferrite thin films," Journal of Applied Physics, vol. 109, pp. 124105-4, 2011.
    [68] C. C. Lee and J. M. Wu, "Studies on leakage mechanisms and electrical properties of doped BiFeO3 films," Electrochem. Solid State Lett., vol. 10, pp. G58-G61, 2007.
    [69] T. Ming-hua, "Microstructure and electrical properties of CeO2 ultra-thin films for MFIS FeRAM applications," Trans. Nonferrous Met. Soc. China vol. 17, pp. s741-s746, 2007.
    [70] T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, "First-principles study of dielectric properties of cerium oxide," Thin Solid Films, vol. 486, pp. 136-140, 2005.
    [71] Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama, and S. Ikegawa, "Electrical properties of single crystalline CeO2 high-k gate dielectrics directly grown on Si (111)," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., vol. 41, pp. 2480-2483, Apr 2002.
    [72] C.-F. Chung and J.-M. Wu, "Low Leakage BiFeO3Thin Films Fabricated by Chemical Solution Deposition," Electrochemical and Solid-State Letters, vol. 8, pp. F63-F66, 2005.
    [73] H. Liu and X. Wang, "Study on the Ce substitution effects of BiFeO3 films prepared by a sol–gel process," Solid State Communications, vol. 148, pp. 203-205, 2008.
    [74] 蕭小鳳, 鐵酸鉍、鐵鈰酸鉍及氧化鈰單一及複合薄膜之研究: 清華大學碩士論文, 2011.
    [75] Y. Fujimori, N. Izumi, T. Nakamura, A. Kamisawa, and Y. Shigematsu, "Development of low dielectric constant ferroelectric materials for the ferroelectric memory field effect transistor," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., vol. 36, pp. 5935-5938, Sep 1997.
    [76] B. T. Phan, C. Jung, T. Chi, and J. Lee, "Trap-controlled Space-charge-limited current conduction in the cr-doped SrTiO3 thin films deposited by using pulsed laser deposition," J. Korean Phys. Soc., vol. 51, pp. 664-668, Aug 2007.
    [77] H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J. P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, and M. Viret, "Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films," Applied Physics Letters, vol. 87, Aug 2005.
    [78] J. G. Wu and J. Wang, "BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(100) substrates," Acta Mater., vol. 58, pp. 1688-1697, Mar 2010.
    [79] J. Wu and J. Wang, "Orientation dependence of ferroelectric behavior of BiFeO3 thin films," Journal of Applied Physics, vol. 106, pp. 104111-5, 2009.
    [80] K. Ueda, H. Tabata, and T. Kawai, "Coexistence of ferroelectricity and ferromagnetism in BiFeO3--BaTiO3 thin films at room temperature," Applied Physics Letters, vol. 75, pp. 555-557, 1999.
    [81] F. Yan, P. Bao, H. L. W. Chan, C.-L. Choy, and Y. Wang, "The grain size effect of Pb(Zr0.3Ti0.7)O3 thin films," Thin Solid Films, vol. 406, pp. 282-285, 2002.
    [82] W. L. Warren and D. Dimos, "Photoinduced hysteresis changes and charge trapping in BaTiO3 dielectrics," Applied Physics Letters, vol. 64, pp. 866-868, 1994.
    [83] X. J. Lou, "Polarization fatigue in ferroelectric thin films and related materials," Journal of Applied Physics, vol. 105, pp. 024101-24, 2009.
    [84] S. R. Shannigrahi, A. Huang, D. Tripathy, and A. O. Adeyeye, "Effect of Sc substitution on the structure, electrical, and magnetic properties of multiferroic BiFeO3 thin films grown by a sol-gel process," J. Magn. Magn. Mater., vol. 320, pp. 2215-2220, Sep 2008.
    [85] S. Chopra, S. Sharma, T. C. Goel, and R. G. Mendiratta, "Structural, dielectric and pyroelectric studies of Pb1−XCaXTiO3 thin films," Solid State Communications, vol. 127, pp. 299-304, 2003.
    [86] S. R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, and A. O. Adeyeye, "Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process," Applied Physics Letters, vol. 90, Jan 2007.
    [87] C. H. Sim, Z. H. Zhou, X. S. Gao, H. P. Soon, and J. Wang, "Ferroelectric and fatigue behavior of Pb(Zr0.52Ti0.48)O3/(Bi3.15Nd 0.85)Ti3O12 bilayered thin films," Journal of Applied Physics, vol. 103, pp. 034102-9, 2008.
    [88] T. Ahmed, A. Vorobiev, and S. Gevorgian, "Growth temperature dependent dielectric properties of BiFeO3 thin films deposited on silica glass substrates," Thin Solid Films, vol. 520, pp. 4470-4474, Apr 2012.
    [89] L. Hongri, S. Yuxia, and W. Xiuzhang, "Study of the electric properties of PbTiO3–BiFeO3 multilayer film structure," J. Phys. D: Appl. Phys., vol. 41, p. 095302, 2008.
    [90] J.-Z. Huang, Y. Wang, Y. Lin, M. Li, and C. W. Nan, "Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition," Journal of Applied Physics, vol. 106, pp. 063911-5, 2009.
    [91] J. Wu and J. Wang, "Effects of SrRuO3 buffer layer thickness on multiferroic (Bi0.90La0.10)(Fe0.95Mn0.05)O3 thin films," Journal of Applied Physics, vol. 106, pp. 054115-5, 2009.
    [92] F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, and J. Zhu, "Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method," Applied Physics Letters, vol. 89, pp. 242914-3, 2006.
    [93] Y.-K. Jun and S.-H. Hong, "Dielectric and magnetic properties in Co- and Nb-substituted BiFeO3 ceramics," Solid State Communications, vol. 144, pp. 329-333, 2007.
    [94] K. Takahashi and M. Tonouchi, "Influence of Mn doping on ferroelectric-antiferromagnet BiFeO3 thin films grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates," Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett., vol. 45, pp. L755-L757, Aug 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE