研究生: |
胡心禕 HU, HSIN YI |
---|---|
論文名稱: |
以包覆有DATS之PLGA微米粒子投遞 硫化氫於缺血性疾病治療之評估 Exogenous Delivery of Hydrogen Sulfide by DATS-loaded PLGA Microparticles for the Treatment of Ischemic Diseases |
指導教授: |
宋信文
SUNG, HSING WEN |
口試委員: |
張燕
黃效民 胡宇方 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 32 |
中文關鍵詞: | 缺血性疾病 、硫化氫 、二烯丙基三硫 、藥物傳輸 、控制釋放 |
外文關鍵詞: | Ischemic disease, Hydrogen sulfide, Diallyl trisulfide, Drug delivery, Controlled release |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
周邊動脈疾病所引起的血管阻塞會造成下肢缺血,並使得缺血區域的組織無法獲得足夠的氧氣與養分供應而逐漸壞死,最終導致肢體喪失。當組織缺血發生時,該區域內的細胞會面臨缺氧的微環境,而缺血所導致的發炎反應及其伴隨而來的免疫細胞會使得局部區域內累積大量的活性氧化物質,傷害細胞中的核酸、蛋白質與脂質,使細胞不易存活。硫化氫為一氣體訊號分子,可做為抗氧化劑,並具有降低氧化壓力、減少細胞凋亡與促進血管新生等生理功能,因此針對缺血部位提供外源性硫化氫,成為一極具潛能的缺血性疾病治療方式。然而硫化氫在體內的存在時間極短,很快就會被代謝成為其他產物,故投遞可以產生硫化氫的前驅物是較為可行的方式。但多數硫化氫前驅物仍有反應速率過快的問題,投遞至體內後可能短時間內就反應完畢,因此無法持續供給組織硫化氫;此外,過高的反應速率可能導致短時間內組織中的硫化氫濃度大幅提升,造成負面影響,反而不利於細胞的生存與生長。在本論文中,我們使用聚乳酸-甘醇酸(poly latic-co-glycotic acid, PLGA)做為藥物載體,用以攜帶疏水性的硫化氫前驅物二烯丙基三硫(diallyl trisulfide, DATS),期望藉由控制其在體內的釋放情形,以提升治療效果。實驗結果顯示我們成功製備出包覆有DATS之PLGA微米粒子,並能釋放DATS長達一週以上。在體外實驗中,我們發現DATS確實能夠提升細胞在缺氧環境與氧化壓力下的存活率,並藉由調控抗氧化基因之表現以降低氧化壓力,且具有促進血管新生的潛能。而在動物實驗裡,我們以外科手術方式將小鼠左腿股動脈結紮,建立下肢缺血的模式後,再將包覆有DATS之PLGA微米粒子注射至缺血組織周圍,並以單光子放射電腦斷層掃描與組織病理切片染色等方式評估其治療效果。我們發現注射包覆有DATS之PLGA微米粒子可以有效降低缺血組織的氧化壓力、減少細胞凋亡的情形,並能夠誘導組織血管新生,改善患部血液灌流情況,減緩小鼠下肢萎縮。由以上實驗結果可知,本論文所開發出的包覆有DATS之PLGA微米粒子可以有效提升缺血細胞的存活率並促進組織的血管新生,具有應用於缺血性疾病治療的潛能。
In critical limb ischemia, the occlusion of blood vessels results in tissue hypoxia, followed by intense inflammatory response and increased oxidative stress, which ultimately limits the survival of the suffered cells. Hydrogen sulfide (H2S) has become recognized as an important signaling molecule, contributing to many physiological and pathological processes. The protective role in combating cellular apoptosis, oxidative stress, as well as promoting angiogenesis prompted vast interest in the possibility of developing new therapies by delivery exogenous H2S for the treatment of ischemic diseases. In this study, a drug delivery system employed poly(lactic-co-glycolic acid) (PLGA) was employed to load diallyl trisulfide (DATS), an organosulfide that can generate H2S upon reacting with glutathione, to administer exogenous H2S for treating ischemic diseases. By providing exogenous H2S, a receptive cell environment in the target tissue can be realized, and thus the survival rate of the suffered cells as well as the therapeutic effects can be improved considerably. The DATS-loaded PLGA microparticles (MPs) was fabricated by single emulsion. Our in vitro results demonstrate that the DATS-loaded PLGA MPs can enhance cell viability of C2C12 mouse myoblasts under hypoxia/oxidative stresses. In the in vivo experiments, intramuscular injection of the DATS-loaded MPs was performed for the treatment of ischemic mouse hindlimb. The animals that received saline, free DATS or empty MPs serve as controls. We found that therapeutic angiogenesis was enhanced and blood flow recovery and limb salvage were ultimately achieved. The strategy that uses DATS-loaded PLGA MPs may provide a new means of delivering the exogenous H2S for the treatment of ischemic diseases.
[1] Jain RK. Molecular regulation of vessel maturation. Nat Med 2003;9:685–93.
[2] Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol 2005;23:821–3.
[3] Segers VFM, Revin V, Wu W, Qiu H, Yan Z, Lee RT, Sandrasagra A. Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease. Circulation 2011;123:1306–15.
[4] Rey S, Lee K, Wang CJ, Gupta K, Chen S, McMillan A, Bhise N, Levchenko A, Semenza GL. Synergistic effect of HIF-1alpha gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc Natl Acad Sci USA 2009;106:20399–404.
[5] Levenberg S, Zoldan J, Basevitch Y, Langer R. Endothelial potential of human embryonic stem cells. Blood 2007;110:806–14.
[6] Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med 2011;365:537–47.
[7] Kappler M, Taubert H, Eckert AW. Oxygen sensing, homeostasis, and disease. N Engl J Med 2011;365:1845–6–authorreply1846.
[8] Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010;121:2437–45.
[9] Lentsch AB, Ward PA. Regulation of inflammatory vascular damage. J. Pathol. 2000;190:343–8.
[10] Vergely C, Maupoil V, Clermont G, Bril A, Rochette L. Identification and quantification of free radicals during myocardial ischemia and reperfusion using electron paramagnetic resonance spectroscopy. Arch. Biochem. Biophys. 2003;420:209–16.
[11] Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014;20:1126–67.
[12] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004;4:181–9.
[13] Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 2014;114:730–7.
[14] Salloum FN. Hydrogen sulfide and cardioprotection - Mechanistic insights and clinical translatability. Pharmacol Ther 2015;152:11–7.
[15] Lefer DJ. A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci USA 2007;104:17907–8.
[16] Polhemus DJ, Kondo K, Bhushan S, Bir SC, Kevil CG, Murohara T, Lefer DJ, Calvert JW. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Heart Fail 2013;6:1077–86.
[17] Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 2010;122:11–9.
[18] Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 2009;105:365–74.
[19] Shi S, Li Q-S, Li H, Zhang L, Xu M, Cheng J-L, Peng C-H, Xu C-Q, Tian Y. Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition. Cell Biol. Int. 2009;33:1095–101.
[20] Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell BW, Yin C, Ockaili RA, Vigneshwar N, Mukhopadhyay ND, Kukreja RC, Abbate A, Salloum FN. Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 2014;7:311–20.
[21] Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabó C, Stahl GL, Sellke FW. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 2009;138:977–84.
[22] Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabó C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 2009;106:21972–7.
[23] Szabó C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 2011;164:853–65.
[24] Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid. Redox Signal. 2014;20:2303–16.
[25] Szabó C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007;6:917–35.
[26] Wang M-J, Cai W-J, Li N, Ding Y-J, Chen Y, Zhu Y-C. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid. Redox Signal. 2010;12:1065–77.
[27] Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem. 2010;53:6275–86.
[28] Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) 2011;3:1377–97.
[29] Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N. Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 2006;64:287–93.
[30] Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA 2007;104:17977–82.
[31] Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G, Gojon G, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ. H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 2013;127:1116–27.
[32] Liang D, Wu H, Wong MW, Huang D. Diallyl Trisulfide Is a Fast H2S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. Org. Lett. 2015;17:4196–9.
[33] Peng B, Chen W, Liu C, Rosser EW, Pacheco A, Zhao Y, Aguilar HC, Xian M. Fluorescent probes based on nucleophilic substitution-cyclization for hydrogen sulfide detection and bioimaging. Chemistry 2014;20:1010–6.