簡易檢索 / 詳目顯示

研究生: 羅巧玲
Lo, Chiao-Ling
論文名稱: 利用核磁共振光譜研究趨化素CXCL9的結構特性及與CXCR3受體胞外區結合能力
NMR study on CXCL9 structure and the interaction with the extracellular regions of CXCR3 receptor
指導教授: 蘇士哲
Sue, Shih-Che
口試委員: 徐駿森
Hsu, Chun-Hua
蕭育源
Hsiao, Yu-Yuan
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: CXCL9趨化因子核磁共振 (NMR)CXCR3胞外區域
外文關鍵詞: CXCL9, chemokine, NMR, CXCR3, extracellular regions
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 趨化因子 (chemokine) 藉由結合細胞表面的G蛋白偶聯受體 (GPCR) 來趨化細胞。CXCL9屬於CXC型趨化因子家族,由干擾素-γ (IFN-γ) 誘導,並且與其他兩類趨化因子CXCL10和CXCL11密切相關。因為這三種趨化因子會結合到相同的GPCR受體CXCR3。彼此間的相互作用促進了免疫細胞的遷移與活化以及與腫瘤抑制有關。特別是CXCL9主要以吸引T淋巴細胞為主,因此參與了許多生理疾病的發病機制。CXCL9在結構方面資訊缺乏,如何與CXCR3專注結合的資訊也有限,本研究希望了解CXCL9的結構特性,並探討CXCR3和CXCL9之間的結合特異性。我們發現在生理環境下,CXCL9以單體形式存在,這樣的形式使其應該能直接與CXCR3作用。而我們也完成了CXCL9骨架胺基酸序列判定 (backbone assignment) 並從骨架胺基酸之化學位移評估了CXCL9二級結構。CXCL9擁有典型的趨化因子結構,折疊成三個反向平行β折板與一個α螺旋。不同的是,CXCL9 具有一個延伸的C末端,其中的序列包含許多正電荷殘基。經由骨架胺基酸的化學位移和圓二色光譜實驗發現延伸區域不具二級結構特性 (random coil),而C端延伸似乎與CXCL9核心結構有短暫的交互作用,我們也證實CXCL9對pH敏感的特性。最後,我們測試了CXCL9與CXCR3不同的胞外區間之結合,發現CXCL9與CXCR3 N端結合作用最強,因此我們認為CXCR3 N端扮演吸引CXCL9與CXCR3結合的角色。


    Chemokines induce chemotaxis through binding G protein-coupled receptors (GPCRs) on cell surface. CXCL9 belongs to CXC-type chemokine family, induced by interferon-γ (IFN-γ), and closely related to CXCL10 and CXCL11. The three chemokines bind the same GPCR target, CXCR3, and the interactions further contribute the immune cell migration, activation, and tumor suppression. Particularly, CXCL9 attracts T lymphocytes, therefore, involved in the pathogenesis of physiologic diseases. There is limited information of CXCL9 structure and binding behavior with CXCR3. The study intends to understand the structural property of CXCL9, and subsequently, investigate the binding specificity between CXCR3 and CXCL9. Under a physiological condition, we characterized CXCL9 as a monomer, allowing to directly interact with CXCR3. We finished the NMR protein backbone assignment and evaluated its secondary structure from backbone chemical shifts. CXCL9 core adopts a canonical chemokine structural fold that is a three-stranded antiparallel β-sheet followed by an α-helix. Differently, CXCL9 further consists a highly basic C-terminal extension where the sequence contains many positively charged residues. The backbone chemical shifts together with circular dichroism (CD) spectrum reported the C-terminal extension to have a random coil-like structure and a transient interaction with the CXCL9 core. In additional, a pH-sensitive property of CXCL9 was charaertized. In final, we tested the binding between CXCL9 and different CXCR3 extracellular regions. The CXCR3 N-terminal peptide has the most effect in binding, therefore, establishing its potent role in recruiting CXCL9 to recognize CXCR3.

    Abstract 2 中文摘要 3 第一章、前言 7 1.1 趨化因子 (Chemokines) 7 1.1.1 CXCL9 7 1.2 趨化因子與G蛋白偶聯受體 (G-protein coupled receptor, GPCR) 相互作用 8 1.2.1 GPCR 8 1.2.2 CXCR3 9 1.3 研究目的 10 第二章、材料與方法 19 2.1 重組蛋白的表現與純化 19 2.1.1 CXCL9表現和純化 19 2.1.2 CXCL91-73表現和純化 19 2.1.3 同位素標記蛋白的培養 20 2.2 胜肽設計與合成 20 2.3 圓二色光譜實驗 (circular dichroism, CD) 20 2.4 粒徑篩層析-多角度散射分析 (SEC-MALS) 21 2.5 三維核磁共振骨架光譜實驗 21 2.6 I-PINE自動判定骨架光譜之胺基酸(NMR automated backbone assignment) 21 2.7 核磁共振1H-15N-二維光譜滴定實驗 22 2.8 Phyre2軟體結構預測 23 第三章、實驗結果 24 3.1 重組蛋白CXCL9表現與純化 24 3.2 CXCL9在生理環境下之寡聚體狀態 24 3.3 模擬結構模型 24 3.4 核磁共振 (Nuclear Magnetic Resonance, NMR) 技術分析水溶性蛋白CXCL9之單體 25 3.4.1 CXCL9分子骨架在二維光譜HSQC之胺基酸判定 (backbone assignment) 25 3.4.2 趨化因子CXCL9對酸鹼環境的敏感性 25 3.5 探討截短C端的CXCL9(CXCL91-73)對結構上的影響 26 3.5.1 CXCL91-73之純化 26 3.5.2 CXCL91-73分子骨架在二維光譜HSQC之胺基酸判定 (backbone assignment) 27 3.5.3 比較CXCL9和CXCL91-73之間的結構變化 27 3.6 CXCL9和CXCR3胜肽片段之交互作用 28 第四章、討論 50 4.1 趨化因子CXCL9與CXCR3其他配體結構差異性 50 4.2 CXCR3與CXCL9間之交互作用 50 參考資料 53

    1. Abdallah, Morsi & Michel, & Kohidai, Laszlo. (2012). Autism Spectrum Disorders and Circulating Chemokines. 10.1007/978-1-4614-4788-7_92.
    2. Keeley, E. C., Mehrad, B., & Strieter, R. M. (2011). Chemokines as mediators of tumor angiogenesis and neovascularization. Experimental cell research, 317(5), 685–690.
    3. Miller, M. C., & Mayo, K. H. (2017). Chemokines from a Structural Perspective. International journal of molecular sciences, 18(10), 2088.
    4. Rajarathnam, K., Schnoor, M., Richardson, R. M., & Rajagopal, S. (2019). How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cellular signalling, 54, 69–80.
    5. Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., Dzuiba, J., Van Damme, J., Walz, A., & Marriott, D. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. The Journal of biological chemistry, 270(45), 27348–27357.
    6. Farber J. M. (1997). Mig and IP-10: CXC chemokines that target lymphocytes. Journal of leukocyte biology, 61(3), 246–257.
    7. Liao, F., Rabin, R. L., Yannelli, J. R., Koniaris, L. G., Vanguri, P., & Farber, J. M. (1995). Human Mig chemokine: biochemical and functional characterization. The Journal of experimental medicine, 182(5), 1301–1314.
    8. Humblin, E., & Kamphorst, A. O. (2019). CXCR3-CXCL9: It's All in the Tumor. Immunity, 50(6), 1347–1349.
    9. Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., McSkane, M., Baba, H., & Lenz, H. J. (2018). CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer treatment reviews, 63, 40–47.
    10. P.C. Fulkerson, M.E. Rothenberg. (2006). CHEMOKINES, CXC | CXCL9 (MIG). Encyclopedia of respiratory medicine, 398-402.
    11. Gorbachev, A. V. etal., (2007). CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. Journal of immunology (Baltimore, Md. : 1950), 178(4), 2278–2286.
    12. Ding, Q., Lu, P., Xia, Y., Ding, S., Fan, Y., Li, X., Han, P., Liu, J., Tian, D., & Liu, M. (2016). CXCL9: evidence and contradictions for its role in tumor progression. Cancer medicine, 5(11), 3246–3259.
    13. Sahin, H., Borkham-Kamphorst, E., Kuppe, C., Zaldivar, M. M., Grouls, C., Al-samman, M., Nellen, A., Schmitz, P., Heinrichs, D., Berres, M. L., Doleschel, D., Scholten, D., Weiskirchen, R., Moeller, M. J., Kiessling, F., Trautwein, C., & Wasmuth, H. E. (2012). Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology (Baltimore, Md.), 55(5), 1610–1619.
    14. Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K., & Maione, T. E. (1994). Crystal structure of recombinant human platelet factor 4. Biochemistry, 33(27), 8361–8366.
    15. Swaminathan, G. J., Holloway, D. E., Colvin, R. A., Campanella, G. K., Papageorgiou, A. C., Luster, A. D., & Acharya, K. R. (2003). Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Structure
    16. Booth, V., Clark-Lewis, I., & Sykes, B. D. (2004). NMR structure of CXCR3 binding chemokine CXCL11 (ITAC). Protein science : a publication of the Protein Society, 13(8), 2022–2028.
    17. Thompson, S., Martínez-Burgo, B., Sepuru, K. M., Rajarathnam, K., Kirby, J. A., Sheerin, N. S., & Ali, S. (2017). Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. International journal of molecular sciences, 18(8), 1692.
    18. Gurevich, V. V., & Gurevich, E. V. (2019). GPCR Signaling Regulation: The Role of GRKs and Arrestins. Frontiers in pharmacology, 10, 125.
    19. Rajarathnam, K., Kay, C. M., Dewald, B., Wolf, M., Baggiolini, M., Clark-Lewis, I., & Sykes, B. D. (1997). Neutrophil-activating peptide-2 and melanoma growth-stimulatory activity are functional as monomers for neutrophil activation. The Journal of biological chemistry, 272(3), 1725–1729.
    20. Rajarathnam, K., Sykes, B. D., Kay, C. M., Dewald, B., Geiser, T., Baggiolini, M., & Clark-Lewis, I. (1994). Neutrophil activation by monomeric interleukin-8. Science (New York, N.Y.), 264(5155), 90–92.
    21. Laurence, J. S., Blanpain, C., Burgner, J. W., Parmentier, M., & LiWang, P. J. (2000). CC chemokine MIP-1 beta can function as a monomer and depends on Phe13 for receptor binding. Biochemistry, 39(12), 3401–3409.
    22. Kleist, A. B., Getschman, A. E., Ziarek, J. J., Nevins, A. M., Gauthier, P. A., Chevigné, A., Szpakowska, M., & Volkman, B. F. (2016). New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochemical pharmacology, 114, 53–68.
    23. Rajagopalan, L., & Rajarathnam, K. (2004). Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. The Journal of biological chemistry, 279(29), 30000–30008.
    24. Elisseeva, E. L., Slupsky, C. M., Crump, M. P., Clark-Lewis, I., & Sykes, B. D. (2000). NMR studies of active N-terminal peptides of stromal cell-derived factor-1. Structural basis for receptor binding. The Journal of biological chemistry, 275(35), 26799–26805.
    25. Rajagopalan, L., & Rajarathnam, K. (2006). Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Bioscience reports, 26(5), 325–339.
    26. Joseph, P. R., & Rajarathnam, K. (2015). Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Protein science : a publication of the Protein Society, 24(1), 81–92.
    27. Allen, S. J., Crown, S. E., & Handel, T. M. (2007). Chemokine: receptor structure, interactions, and antagonism. Annual review of immunology, 25, 787–820.
    28. Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., McSkane, M., Baba, H., & Lenz, H. J. (2018). CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer treatment reviews, 63, 40–47.
    29. Colvin, R. A., Campanella, G. S., Sun, J., & Luster, A. D. (2004). Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. The Journal of biological chemistry, 279(29), 30219–30227.
    30. Keeley, E. C., Mehrad, B., & Strieter, R. M. (2010). CXC chemokines in cancer angiogenesis and metastases. Advances in cancer research, 106, 91–111.
    31. Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S., & Proost, P. (2018). Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Frontiers in immunology, 8, 1970.
    32. Berchiche, Y. A., & Sakmar, T. P. (2016). CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Molecular pharmacology, 90(4), 483–495.
    33. Li, H., Rong, S., Chen, C., Fan, Y., Chen, T., Wang, Y., Chen, D., Yang, C., & Yang, J. (2019). Disparate roles of CXCR3A and CXCR3B in regulating progressive properties of colorectal cancer cells. Molecular carcinogenesis, 58(2), 171–184.
    34. Salanga, C. L., & Handel, T. M. (2011). Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Experimental cell research, 317(5), 590–601.
    35. Colvin, R. A., Campanella, G. S., Manice, L. A., & Luster, A. D. (2006). CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Molecular and cellular biology, 26(15), 5838–5849.
    36. Vanheule, V., Crijns, H., Poosti, F., Ruytinx, P., Berghmans, N., Gerlza, T., Ronsse, I., Pörtner, N., Matthys, P., Kungl, A. J., Opdenakker, G., Struyf, S., & Proost, P. (2018). Anti-inflammatory effects of the GAG-binding CXCL9(74-103) peptide in dinitrofluorobenzene-induced contact hypersensitivity in mice. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, 48(10), 1333–1344.
    37. Vanheule, V., Boff, D., Mortier, A., Janssens, R., Petri, B., Kolaczkowska, E., Kubes, P., Berghmans, N., Struyf, S., Kungl, A. J., Teixeira, M. M., Amaral, F. A., & Proost, P. (2017). CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions. Frontiers in immunology, 8, 530.
    38. Wei, Y., Thyparambil, A. A., & Latour, R. A. (2014). Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. Biochimica et biophysica acta, 1844(12), 2331–2337.

    QR CODE