簡易檢索 / 詳目顯示

研究生: 張皓婷
Chang, Hao-Ting
論文名稱: 懷孕女性輻射工作人員之胎兒劑量評估研究
Research on Fetal Dose Assessment in the Occupational Exposure of Pregnant Women
指導教授: 許芳裕
Hsu, Fang-Yuh
許靖涵
Hsu, Ching-Han
口試委員: 陳拓榮
Chen, Tou-Rong
趙自強
Chao, Tsi-Chian
林信宏
Lin, Hsin-Hon
林曉均
Lin, Hsiao-Chun
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 懷孕女性輻射工作人員胎兒劑量評估懷孕婦女假體子宮劑量轉換係數
外文關鍵詞: Pregnant Radiation Workers, Fetal Dose Assessment, Pregnant Woman Phantom, Uterine Dose Conversion Coefficient (UDCC)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 懷孕女性輻射工作人員在工作中可能導致胚胎或胎兒受到輻射曝露。我國現行游離輻射防護安全標準規定,賸餘妊娠期間下腹部表面等價劑量不得超過 2 mSv。為因應 ICRP 第 103 號報告建議,應確保賸餘妊娠期間胎兒的額外劑量不超過 1 mSv。然而,目前國內外缺乏胎兒劑量直接監測技術,如何正確評估胎兒劑量將成為重要挑戰。
    本研究於第一部分建立一系列更適合台灣懷孕婦女的假體,專注於腹中胎兒劑量評估,以解決使用西方 ORNL 孕婦假體評估台灣胎兒劑量可能低估的問題;第二部分與 ORNL 數學假體及 ICRP 報告進行比較與驗證,以確認台灣假體的正確性;第三部分進行137Cs與醫用診斷X光量測實驗,驗證台灣假體模擬數值的準確性;第四部分,本研究旨在驗證使用子宮劑量轉換係數(UDCC)於臨床中估算胎兒劑量的可行性與有效性。實驗將在醫院核醫科進行為期一個月的測量,期間將懷孕三個月的台灣孕婦假體置於放射師的日常工作環境中,並收集假體腹部表面及子宮內的累積劑量。本研究使用熱發光劑量計(TLD)和人員劑量配章測量腹部表面的累積劑量,並利用子宮劑量轉換係數估算子宮(胎兒)的累積劑量,最終將估算結果與假體內量測的子宮累積劑量進行比較,以確認UDCC於臨床中的可行性。
    研究結果顯示,若僅依賴國際懷孕婦女數學假體,胎兒劑量可能被低估,因此使用台灣懷孕婦女假體進行胎兒劑量評估具有必要性。137Cs與醫用診斷X光量測實驗測量值與模擬的結果相近,腹部表面等價劑量、子宮等價劑量及其子宮劑量轉換係數的平均誤差皆小於15%,表示使用UDCC評估胎兒劑量足夠精準,可用於後續應用。第四部分的核醫量測實驗,以五種方法所推估的子宮等價劑量,經校正後,所有方法的百分誤差均小於10%,證實使用UDCC能夠有效估算子宮等價劑量(視為胎兒劑量),且意味著如果工作人員沒有佩戴腹部佩章,胸部佩章亦可以作為腹部佩章的替代方案。
    最後,本研究建立一套完整的胎兒劑量評估方法,並提供流程圖及相應的子宮劑量轉換係數表,為未來臨床應用和相關監管機構提供參考,有助於進一步保障輻射工作環境中懷孕工作人員及其胎兒的健康與安全。


    Pregnant radiation workers may expose their fetuses to ionizing radiation. In Taiwan, current regulations limit the abdominal surface dose to 2 mSv during pregnancy. The ionising radiation authority (Nuclear Safety Commission) is considering revising these regulations to align with ICRP 103, recommending a fetal dose limit of 1 mSv. However, the lack of fetal dose monitoring techniques presents a significant challenge in accurately assessing fetal dose.
    This study developed Taiwanese pregnant phantoms to address potential fetal dose underestimations with the ORNL phantom. Their accuracy was validated against ORNL mathematical phantoms and ICRP data. Experiments with 137Cs and diagnostic X-rays verified simulation precision, and the feasibility of using the Uterine Dose Conversion Coefficient (UDCC) for fetal dose estimation was evaluated. In nuclear medicine measurements, a Taiwanese pregnant phantom was positioned in a radiation worker's environment. TLD and chest dosimeters measured abdominal and uterine (fetal) doses were estimated using UDCC. These estimates were compared to measured values to validate its clinical applicability.
    The results showed that ORNL phantoms might underestimate fetal doses in Taiwanese cases, emphasizing the importance of using the Taiwanese pregnant phantom for accurate fetal dose assessment. Experiments with 137Cs and diagnostic X-rays showed all data good agreement with simulation results and errors within 15%, confirming the precision of the UDCC method. Nuclear medicine measurements showed uterine dose errors across five calibrated methods were under 10%, confirming UDCC's effectiveness. This result also implies that if an abdominal dosimeter is not worn by the worker, a chest dosimeter could serve as an alternative. Finally, this study establishes a method for fetal dose assessment, along with a flowchart and UDCC tables, which can provide guidance for future clinical applications and regulatory agencies, contributing to improved health and safety for pregnant radiation workers and their fetuses in radiation work environments.

    中文摘要 ii ABSTRACT iii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章、導論 1 1.1 前言 1 1.2 輻射對胎兒及孕婦的影響 1 1.2.1 輻射誘發之生物效應 2 1.2.2 胎兒的輻射效應 4 1.2.3 胎兒受到輻射曝露後的防護措施 5 1.3 懷孕女性工作人員之輻射曝露管制 8 1.3.1 我國現行游離輻射防護安全標準 8 1.3.2 國際放射防護委員會及各國法規建議 8 1.4 國際胎兒劑量評估及懷孕婦女假體發展 11 1.4.1 懷孕婦女數學假體 11 1.4.2 懷孕婦女體素假體 13 1.4.3 懷孕婦女混合假體 16 1.4.4 子宮平均劑量 18 1.4.5 劑量轉換係數 19 1.5 研究目標與動機 19 第二章、材料方法 22 2.1 第一部分-懷孕婦女假體 22 2.1.1 ORNL懷孕婦女數學假體 22 2.1.2 台灣懷孕婦女混合假體 23 2.2 第二部分-子宮轉換係數模擬 27 2.2.1蒙地卡羅模擬 27 2.2.2子宮轉換係數(UCC) 27 2.3 第三部分-輻射源量測與模擬驗證 28 2.3.1 輻射劑量計 28 2.3.2 137Cs量測實驗 30 2.3.3 醫用診斷X光量測實驗 30 2.4 第四部分-醫院量測驗證 32 2.4.1 子宮劑量轉換係數(UDCC) 32 2.4.2 核醫科量測實驗 33 第三章、結果討論 38 3.1 台灣懷孕婦女假體模擬與驗證 38 3.2 子宮轉換係數(UCC) 38 3.3 137Cs及醫用X光量測實驗結果 45 3.4 核醫科量測實驗 47 3.5 胎兒劑量評估流程 50 3.5.1 子宮劑量轉換係數(UDCC) 50 3.5.2 胎兒劑量評估流程圖 54 3.5.3 胎兒劑量評估案例 56 第四章、結論 58 參考文獻 60

    1. Pregnancy and Medical Radiation. 2000: International Commission on Radiological Protection.
    2. Fetal Radiation Dose Calculations. 2008: American National Standard.
    3. Prashar, S., Occupational Radiation Exposure during Pregnancy: A Personal Experience. Journal of Postgraduate Medicine, Education and Research, 2018. 54(1): p. 5-7.
    4. Osei, E. and C. Kotre, Equivalent dose to the fetus from occupational exposure of pregnant staff in diagnostic radiology. The British journal of radiology, 2001. 74(883): p. 629-637.
    5. The 2007 Recommendations of the International Commission on Radiological Protection. 2007: International Commission on Radiological Protection.
    6. Capranzano, P., et al., Motivations for and barriers to choosing an interventional cardiology career path: results from the EAPCI Women Committee worldwide survey. EuroIntervention, 2016. 12(1): p. 53-59.
    7. Bottollier-Depois, J.-F., et al., Assessing exposure to cosmic radiation during long-haul flights. Radiation research, 2000. 153(5): p. 526-532.
    8. Brent, R.L., Saving lives and changing family histories: appropriate counseling of pregnant women and men and women of reproductive age, concerning the risk of diagnostic radiation exposures during and before pregnancy. American journal of obstetrics and gynecology, 2009. 200(1): p. 4-24.
    9. De Santis, M., et al., Radiation effects on development. Birth Defects Research Part C: Embryo Today: Reviews, 2007. 81(3): p. 177-182.
    10. Jain, C., ACOG Committee Opinion No. 723: guidelines for diagnostic imaging during pregnancy and lactation. Obstetrics & Gynecology, 2019. 133(1): p. 186.
    11. Lim, H., et al., Maternal occupational exposure to ionizing radiation and major structural birth defects. Birth Defects Research Part A: Clinical and Molecular Teratology, 2015. 103(4): p. 243-254.
    12. Sharp, C., J. Shrimpton, and R. Bury, Diagnostic medical exposures. Advice on exposure to ionising radiation during pregnancy. 1998.
    13. 張寶樹, 醫用保健物理學. 2001: 俊傑出版社.
    14. 1990 Recommendations of the International Commission on Radiological Protection. 1991: International Commission on Radiological Protection.
    15. Roman, E., et al., Health of children born to medical radiographers. Occupational and environmental medicine, 1996. 53(2): p. 73-79.
    16. Lauria, L., et al., Reproductive disorders and pregnancy outcomes among female flight attendants. Aviation, space, and environmental medicine, 2006. 77(5): p. 533-539.
    17. Collins, M. and B. Shelton, Guide to NRC reporting and recordkeeping requirements. Compiled from requirements in Title 10 of the US Code of Federal Regulations as codified on December 31, 1993; Revision 1. 1994, Nuclear Regulatory Commission.
    18. Preconception and Prenatal Radiation Exposure: Health Effects and Protective Guidance. 2013: NCRP.
    19. Specifications for the Bottle Manikin Absorption Phantom. 1995: American National Standard.
    20. Cristy, M., Mathematical phantoms for use in reassessment of radiation doses to Japanese Atomic-Bomb survivors. 1985, Oak Ridge National Lab.
    21. Conversion Coefficients for use in Radiological Protection against External Radiation. 1996: International Commission on Radiological Protection.
    22. Snyder, W.S., " S" absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet no. 11, 1975.
    23. Snyder, W.S., Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various argans of a heterogeneous phantom. MIRD pamphlet No. 5, 1969.
    24. Report of the Task Group on Reference Man. . 1975: International Commission on Radiological Protection.
    25. Cristy, M. and K. Eckerman, Specific Absorbed fractions of energy at various ages from internal photon sources: 1, Methods. 1987, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
    26. Stabin, M., et al., Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. 1995, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
    27. Chen, J., Mathematical models of the embryo and fetus for use in radiological protection. Health Physics, 2004. 86(3): p. 285-295.
    28. Kainz, W., Development of pregnant woman models for nine gestational ages and calculation of fetus heating during magnetic resonance imagaing (MRI). Bioelectromagnetics, 2005.
    29. Shi, C. and X.G. Xu, Development of a 30‐week‐pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Medical physics, 2004. 31(9): p. 2491-2497.
    30. Tissue substitutes in radiation dosimetry and measurement. 1989: International Commission on Radiation Units.
    31. Staton, R., et al., A comparison of newborn stylized and tomographic models for dose assessment in paediatric radiology. Physics in Medicine & Biology, 2003. 48(7): p. 805.
    32. Lee, C. and J. Lee, TU‐E‐I‐611‐02: The Dosimetric Effect of Unrealistic Arm Structure of Stylized Human Model. Medical Physics, 2005. 32(6Part17): p. 2100-2100.
    33. Becker, J., et al., Katja—the 24 week of virtual pregnancy for dosimetric calculations. Polish Journal of Medical Physics and Engineering, 2008. 14(1): p. 13-20.
    34. Dimbylow, P., Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz. Physics in Medicine & Biology, 2006. 51(10): p. 2383.
    35. Dimbylow, P., SAR in the mother and foetus for RF plane wave irradiation. Physics in medicine & biology, 2007. 52(13): p. 3791.
    36. Dimbylow, P., Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields. Physics in Medicine & Biology, 2005. 50(6): p. 1047.
    37. Xu, X.G. and C. Shi. Preliminary development of a 4D anatomical model for Monte Carlo simulations. in Monte Carlo 2005 Topical Meeting. The Monte Carlo method: versatility unbounded in a dynamic computing world [CD-ROM]. Chattanooga (TN): American Nuclear Society, LaGrange Park (IL). 2005. Citeseer.
    38. Xu, X.G., et al., A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3,-P6 and-P9. Physics in Medicine & Biology, 2007. 52(23): p. 7023.
    39. Paulbeck, C., et al., Dosimetric impact of a new computational voxel phantom series for the Japanese atomic bomb survivors: pregnant females. Radiation research, 2019. 192(5): p. 538-561.
    40. Sensakovic, W.F., et al., Fetal dosimetry at CT: a primer. Radiographics, 2020. 40(4): p. 1061-1070.
    41. Angel, E., et al., Radiation dose to the fetus for pregnant patients undergoing multidetector CT imaging: Monte Carlo simulations estimating fetal dose for a range of gestational age and patient size. Radiology, 2008. 249(1): p. 220-227.
    42. Osei, E. and K. Faulkner, Fetal position and size data for dose estimation. The British journal of radiology, 1999. 72(856): p. 363-370.
    43. Huda, W., et al., Embryo dose estimates in body CT. American Journal of Roentgenology, 2010. 194(4): p. 874-880.
    44. Xie, T. and H. Zaidi, Estimation of the radiation dose in pregnancy: an automated patient-specific model using convolutional neural networks. European radiology, 2019. 29: p. 6805-6815.
    45. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. 2010: International Commission on Radiological Protection.
    46. Zhang, H., et al., Construction and application of BREP phantom for Chinese women of childbearing age in radiation protection. Radiation Protection Dosimetry, 2020. 189(4): p. 407-419.
    47. Wu, Y., et al., Development of Chinese female computational phantom rad-human and its application in radiation dosimetry assessment. Nuclear Technology, 2018. 201(2): p. 155-164.
    48. Kim, S., et al., A feasibility study to reduce misclassification error in occupational dose estimates for epidemiological studies using body size-dependent computational phantoms. IEEE transactions on radiation and plasma medical sciences, 2018. 3(1): p. 83-88.
    49. SARIOĞLU, B., S.Ş. LÜLE, and Ü. ÇOLAK, Dose calculations of anthropomorphic voxel-based phantom for Americium-241/Beryllium neutron source. BgNS Trans, 2020. 25(1): p. 81-85.
    50. Akkurt, H. and K.F. Eckerman, Development of PIMAL: mathematical phantom with moving arms and legs. 2007, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
    51. Ho, W., et al., Radiation doses to staff in a nuclear medicine department. JOURNAL-HONG KONG COLLEGE OF RADIOLOGISTS, 2002. 5: p. 24-28.
    52. Mountford, P. and H. Steele, Fetal dose estimates and the ICRP abdominal dose limit for occupational exposure of pregnant staff to technetium-99m and iodine-131 patients. European journal of nuclear medicine, 1995. 22: p. 1173-1179.
    53. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. 2002: International Commission on Radiological Protection.
    54. Müller, F., Human embryology and teratology. 1990: Baltimore: Urban & Schwarzenberg.
    55. Petoussi-Henss, N., et al., Organ doses of the fetus from external environmental exposures. Radiation and Environmental Biophysics, 2021. 60: p. 93-113.
    56. Makkia, R., et al., Construction of realistic hybrid computational fetal phantoms from radiological images in three gestational ages for radiation dosimetry applications. Physics in Medicine & Biology, 2019. 64(20): p. 205003.
    57. Makkia, R., Fetus phantom constructions for overweight and obese pregnant females for radiological applications. 2019: East Carolina University.
    58. Krstić, D. and D. Nikezić, Input files with ORNL—mathematical phantoms of the human body for MCNP-4B. Computer Physics Communications, 2007. 176(1): p. 33-37.
    59. Tao, H.-L., Height, weight, and entry earnings of female graduates in Taiwan. Economics & Human Biology, 2014. 13: p. 85-98.
    60. Abella, V., et al., Monte Carlo model of the female RANDO phantom irradiation with an Elekta Precise linear accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010. 619(1-3): p. 230-233.
    61. Zhou, F.-H., Obstetric Nursing. 2014, Yeong Dah Book Company LTD.
    62. Kuok ChiHang, K.C., et al., Preoperative measurement of maternal abdominal circumference relates the initial sensory block level of spinal anesthesia for cesarean section: an observational study. 2016.
    63. Hsieh WuShiun, H.W., et al., Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. 2006.
    64. Magann, E.F., et al., Amniotic fluid volume assessment: eight lessons learned. International Journal of Women's Health, 2021: p. 773-779.
    65. Chang, H.-T., et al., Uterine dose conversion coefficients for external photons for the Taiwanese pregnant women. Radiation Protection Dosimetry, 2023. 199(4): p. 325-336.
    66. Brown, F.B., et al., MCNP version 5. Trans. Am. Nucl. Soc, 2002. 87(273): p. 02-3935.
    67. Zanzonico, P., Routine quality control of clinical nuclear medicine instrumentation: a brief review. Journal of Nuclear Medicine, 2008. 49(7): p. 1114-1131.
    68. Commission, I.E., Medical diagnostic X-ray equipment-Radiation conditions for use in the determination of characteristics. IEC 61267, 2005.
    69. Lin, Y.-C., et al., Proficiency testing and dose comparison for external personnel dosimeters evaluation in Taiwan. Radiation Measurements, 2020. 135: p. 106345.
    70. Dietze, G., et al., Draft for discussion: Basis for dosimetric quantities used in radiological protection. International commission on radiological protection committee, 2005.
    71. Liu, Y.-R., et al., Dose estimation of eye lens for interventional procedures in diagnosis. Radiation Physics and Chemistry, 2017. 140: p. 247-251.
    72. Society, H.P., Personnel Dosimetry Performance: Criteria for Testing. 2001: Health Physics Society.
    73. Chang, H.-T., et al., Assessment of foetal dose and occupational exposure for pregnant workers in nuclear medicine using the Taiwanese pregnancy phantom. Radiation Protection Dosimetry, 2024. 200(15): p. 1433-1442.
    74. Mountford, P.J. and M.J. O'Doherty, Exposure of critical groups to nuclear medicine patients. Applied radiation and isotopes, 1999. 50(1): p. 89-111.
    75. Benatar, N., B. Cronin, and M. O’doherty, Radiation dose rates from patients undergoing positron emission tomography: implications for technologists and waiting areas. European journal of nuclear medicine, 2000. 27: p. 583-589.
    76. Snyder, W.S., M.R. Ford, and G.G. Warner, Estimates of Specific Absorbed Fractions for Photon Sources: Uniformly Distributed in Various Organs of a Heterogeneous Phantom. 1978: Society of Nuclear Medicine.
    77. 原子能委員會, 游離輻射應用與管理統計. 112年9月.

    QR CODE