簡易檢索 / 詳目顯示

研究生: 游輝日
Hui Jih Yu
論文名稱: 疏水性奈米鈀用作無電鍍銅催化劑及其作為薄膜電晶體顯示器閘極陣列之研究
A Study of Hydrophobic Pd Nanoparticles as Activator for Electroless Copper Plating and its Application as Gate Electrode of α-Si TFT-LCD
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 67
中文關鍵詞: 疏水性奈米鈀粒子無電電鍍化學鍍液晶顯示器
外文關鍵詞: Hydrophobic Pd nanoparticles, electroless plating, TFT-LCD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大尺寸高解析度之TFT液晶顯示器(TFT-LCD)是近幾年各界熱門的發展方向。而因銅具有低電阻值能有效降低RC-delay效應,因此比鋁更適合成為閘極導線材料,也符合液晶顯示器在未來的發展趨勢。另外,往大尺寸方向發展另一問題,便是建置設備設本勢必更加難以想像,因此具有低成本潛力的無電鍍沉積方式便是值得研究的方向。
    將銅應用在閘極導線最需克服的問題便是銅與玻璃基材之間的附著性。本論文之重點便是將疏水性奈米鈀粒子用作為無電鍍沉積之催化劑,並期待能發展出不外加附著層(adhesion layer)的方式來沉積金屬薄膜並最終形成閘極金屬導線。
    於論文中除了應用疏水性奈米鈀粒子作為催化劑,更以商用之催化劑-鍚鈀膠體作為比較對象。是以AA、SEM、四點探針等檢驗由無電鍍方式所沉積之銅膜。
    然而在玻璃基材上所沉積之銅膜有嚴重之不連續性的問題,因此具ITO薄膜之玻璃基材在文末便成為改善銅膜形成之替換基材。
    在ITO基材上所沉積之銅膜不僅具有優良之連續性與光面性。因退火而造成電阻值下降的因素可簡分為溫度與時間,若在300℃退火四個小時候,則電阻值可降低為~3μΩcm。


    Thin Film Transistor- Liquid Crystal Display (TFT-LCD) has been extensively used. Because copper has lower resistivity than aluminum, it is considered an appropriate material for gate TFT-LCD for next generation.
    One potential technology for this transition is electroless copper plating. Chief performance concern would be the adhesion of copper deposit to the substrate surface. In this study, we attempt to use a new activator, hydrophobic Pd nanoparticles which was developed in our laboratory to improve this technology.
    In this study, we firmly applied nano-Pdhy in deposition onto glass substrates and compared it with traditional Pd/Sn colloids. Characterization and morphology of Cu film were studied by AA, SEM, XRD and four-point probe.
    Since Cu film deposited on glass substrates shows serious discontinuation and poor adhesion, ITO substrates were later employed.
    Cu film deposited on an adequately rough ITO substrates shows good coverage, smoothness and low electrical resistance,~3μΩcm , after annealing at 300℃for 4hr.

    Abstract Ⅰ Table of Contents Ⅱ List of Figures Ⅴ List of Table Ⅷ Table of contents Chapter 1 Introduction 1 1-1 Introduction of TFT-LCD 1 1-2 Background of Thin Film Transistor 4 Chapter 2 Literatures review 7 2-1 Copper as interconnection metal 7 2.1-1 Candidate metal for interconnection…………………………………7 2.1-2 Improvements in Al and Ag………………………………………….9 2-2 Issues with copper as gate metal 10 2-3 Electroless copper plating used in AM-LCD’s 12 2-4 Activation Solution 15 2-5 Hydrophobic Pd-based nanoparticles (nano-Pdhy) 17 2-6 Motivation and Research Purpose 21 Chapter 3 Research Method 22 3-1 Materials 22 3-2 Characterization Instruments 23 3-2-1 Atomic Absorbance Spectroscopy 23 3-2-2 Scanning Electron Microscope (SEM) 26 3-2-3 Atomic Force Microscopy………………………………………….27 3-2-4 X-ray Diffraction………………………….………………………..28 3-3 Experiments 31 3-3-1 Syntheses and characterization of hydrophobic Pd nanoparticles….31 3-3-2 Application of Pd/Sn colloids on glass substrate…………………...32 3-3-2-1 Standard electroless copper plating process………………...32 3-3-2-2 Amounts of Pd/Sn absorption onto substrates………………33 3-3-3 Process of nano-Pdhy application on glass substrate Determination..33 3-3-3-1 Nano-Pdhy solution applied on glass substrate……………....33 3-3-3-2 Acceleration with methanol………………………………....34 3-3-3-3Heating activated substrates at high temperature and vacuum34 3-3-3-4Improved process for applying nano-Pdhy onto glass substrate………………………………...……………………34 3-4 Insert ITO layer to improve Cu film and adhesion 36 3-5 Morphology and Characterization of Cu film…………........……………...37 3-5-1 Copper film analysis 37 3-5-2 X-ray deflection 37 3-5-3 Resistivity measurement 37 3-5-4 Annealing 37 3-5-5 3M tape test 37 Chapter 4 Result and Discussion 38 4-1 Adsorption of hydrophobic Pd nanoparticles to glass substrate 38 4-2 Acceleration by methanol immersion 42 4-3 Optimization of activation procedures 43 4-4 Morphology of copper film deposition on glass substrates and characterization 47 4-5 Electroless Cu deposition on ITO substrates……………………………….52 4-6 Characterization of copper film deposition on ITO substrates……………..60 Chapter 5 Conclusion and Future Work 62 Chapter 6 Reference 64

    1. 顧鴻壽,『平面面板顯示器-基本概論』,高立圖書公司,9月(2004).
    2. 顧鴻壽,『光電液晶平面顯示器-技術基礎及應用』,3月(2004).
    3. R. L. Wisnieff and J. J. Ristsko, “Electronic Displays for Information Technology”, IBM J. RES. DEVELOP. VOL. 44 NO.3 May 2000.
    4. W. E. Howard, “Thin-Film-Transistor/Liquid Crystal Display Technology_An Introduction”, IBM J. RES. DEVELOP. VOL. 36 NO.1 May 1992.
    5. 蔡昕辰,『鈀金屬奈米粒子應用於銅製程積體電以無電鍍電化行沉積導電層之研究』,國立清華大學,2002.
    6. H.S. Rathore and D. Nguyen,”Effect of Scaling of Interconnection” ,copper metallization for Sub-Micron Integrated , 8 ,May(1998).
    7. H.S. Rathore and D. Nguyen,”Comparison of Properties of Interlayer Metals” ,copper metallization for Sub-Micron Integrated , 14 ,May(1998).
    8. S. P. Murarka and Rl J . Gutmann, “Advanced multilayer metallization schemes with copper as inter connection metal” ,Thin Solid Films, 236(1993)257-266.
    9. J. D. Mcbrayer, R. M. Swansion and T. W. Sigmon, J. Electrochem. Soc., 133(1986)1243.
    10. W. H. Lee, B. S. Cho, B. J. Kang, J. Y. Kim and J. G. Lee, “Enhanced properties of Ag alloy films for advanced TFT-Lcd’s” ,Journal of the Korean Physical Society, Vol. $0, No.1, January 2002, pp.110~114.
    11. T. Arai, A. Makita, Y. Hiromasu and H. Takatsuji, “Mo-capped Al-Nd alloy for both gate and data buslines of liguid crystal diplays”, This Solid Films 383(2001)287-297.
    12. E. Iwamura, T. Ohnishi, K. Yoshikawa, “Astudy of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs”, Thin Solid Films 270(1995)450-455.
    13. T. Laursen, Daniel Adams, T. L. Alford, K-N. Tu, F. Deng, R. Morton and S. S. Lau, Thin Solid Films 290-291, 411(1996)
    14. J. Lan and J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin-film transistor for Am-LCDs”, IEEE ElECTRON DEVICE LETTERS, Vol. 20, NO. 3, March 1999.
    15. H. Sirringhaus, S. D. Theiss, A. Kahn, and S. Wagner, “Self-passivated copper gates for amorphous silicon thin-film transistors”, IEEE ELECTRON DEVICE LETTERS, Vol. 18, August 1997.
    16. S. W. Lee, K. S. Cho, B. K. Choo, and J. Jang, Member, “Copper Gate Hydrogenated Amorphous Silicon TFT With Thin Buffer Layers”, IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 6, JUNE 2002.
    17. S. W. Lee, I. K. Woo, K. S. Cho, J. Jang, “ Hydrogenated am orphous silicon thin-film transistor using APC alloy for both gate and data bus lines”, Journal of Non-crystalline Solids 299-302 (2002) 1351-1354.
    18. P. M. Fryer, E. C. Colgan, E. Galligan,W. Graham, R. Horton, D. Hunt, K. Latzko, R. Nywening, L. Jenkins, R. John, P. Koke, Y. Kuo, F. Libsch, A. Lien, I. Lovas, R. Polastre, M. E. Rothwell, J. Souk, J.Wilson, R.Wisnieff, and S. Wright, “A six-mask TFT-LCD process using copper-cate metallurgy,” in Dig. Soc. Inform. Displ., 1996, pp. 333–336.
    19. W. H. Lee, H. L. Cho, B. S. Cho, J. Y. Kim, Y. S. Kim, W. G. Jung, H. Kwon, J. H. Lee, P. J. Reucroft, C. M. Lee, and J. G. Lee, “Factors affecting passivation of Cu(Mg) alloy films,” J. Electrochem. Soc., vol. 147, pp. 3066–3069, 2000.
    20. E. Delamarche, M. Geissler, R. H. Magnuson, H. Schmid, and B. Michel, “Patterning NiB Electroless Deposited on Glass Using an Electroplated Cu Mask, Microcontact Printing, and Wet Etching”, Langmuir, 19, 5892-5897, 2003.
    21. M. Geissler, H. Kind, P. Schmidt-Winkel, B. Michel, and E. Delamarche, “”Direct Patterning of NiB on Glass Substrates Using Microcontact Printing and Electroless Deposition”, Langmuir, 19, 6283-6296, 2003.
    22. E. Delamarche, J. Vichiconti, S. A. Hall, M. Geissler, W. Graham, B. Michel, and R. Nunes, “Electroless Deposition of Cu on Glass and Patterning with Microcontact Printing”, langmuir, 19, NO. 17, 2003.
    23. J. J. Kim and S. H. Cha, “Optimized surface treatment of indium tin oxide (ITO) for copper electroless plating”, Jan. J. Appl. Phys. Vol. 41 (2002) pp. L 1269-L1271.
    24. 莊達人,”鈀膠體”,電路板資訊,17期.
    25. 莊達人,”錫鈀膠體”,電路板資訊,57期.
    26. 李建良, 『以反應性微胞為模版製備貴金屬粒子和其粉體應用於化學鍍製程之研究』, 博士論文, 國立清華大學, (2001).
    27. 王文琳,『以反應性微胞為模版製備奈米鈀金屬粒子研究及其應用』,國立清華大學,6月,2003.
    28. T. Teranishi, M. Miyake, “ Size control of palladium nanoparticles and their crystal structures”, Chem. Mater., 10, 594(1998).
    29. T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size of monodispersed Pt nanopatricles and their 2D organization by electrophoretic deposition”, J. Phys. Chem. B, 103, 3818 (1999)
    30. 謝重仁,『鈀金屬奈米粒子應用於印刷電路板無電鍍金屬層製程之研究』,國立清華大學,6月,2002.
    31. “Atomic asbsorption spectrometry”. ROYAL SOCIETY OF CHEMISTRY
    32. http://www.molec.com/what_is_afm.html
    33. http://mrsec.wisc.edu/Edetc/modules/xray/X-raystm.pdf
    34. 陳麗蓉,『製備鈀金屬奈米粒子與應用於化學鍍銅製程之研究』,國立清華大學,六月,2004.
    35. D. B. Knorr, D. P. Tracy, and K. P. Rodbell, Appl. Phys. Lett., 59, 3241 (1986).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE