簡易檢索 / 詳目顯示

研究生: 林一蘋
I-Ping Lin
論文名稱: 連結胜肽對蛋白質表現與純化之影響
Functional Analysis of Linker Peptides on Protein Expression and Purification
指導教授: 張大慈
Dah-Tsyr Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 74
中文關鍵詞: 澱粉吸附區域綠色螢光蛋白蛋白表現純化連結胜肽
外文關鍵詞: starch-binding domain, enhanced green fluorescent protein, protein expression, purification, linker peptide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在重組蛋白表現及純化的領域裡,親和標記物與融合蛋白結合之技術已被廣泛地應用。通常親和標記物以及欲生產之蛋白的中間需要一段連結胜肽,以利前後兩端的區塊維持各自獨立的結構及功能。為了研究不同的連結胜肽對於蛋白質表現及純化的影響,本研究從根黴菌(Rhizopus oryzae)的葡糖澱粉酵素(glucoamylase, GA)製備重組澱粉吸附區域(starch-binding domain, SBD),利用其具有兩個澱粉結合位置(starch-binding site, SBS I和SBS II)與生澱粉結合之能力,修飾其成為幫助重組蛋白純化之親和標記物。研究中以綠色螢光蛋白(enhanced green fluorescent protein, eGFP)為標的蛋白,銜接於澱粉吸附區域之N端或C端,兩者之間嵌入不同的連結胜肽,以測試重組融合蛋白之表現及功能。研究顯示大部分融合蛋白能成功表現於大腸桿菌中,各種可溶之重組蛋白均能利用其與澱粉的親合力迅速純化之,回收高純度具有活性的重組融合蛋白。比較連結胜肽位於澱粉吸附區域的N端或C端對於澱粉結合能力之影響,發現後者之融合蛋白與澱粉的最高吸附數值高於前者,可能係因前者的連結胜肽會影響SBS I之澱粉結合能力,所以此澱粉吸附區域較適合放置於連結胜肽及融合蛋白的N端。進一步研究顯示,不論澱粉吸附區域在融合蛋白之N端或C端,都不會影響其解離常數及標的蛋白之活性。此外,本研究發展以攪拌法及澱粉管柱層析法,測試利用玉米澱粉純化蛋白之效率。結果顯示所有的融合蛋白皆可成功純化,雖然利用攪拌法可達到較高的吸附率,但是利用澱粉管柱層析法可獲得較高的回收率,且比攪拌法更省時。本研究發展的技術方便、高效率又經濟,因此值得進一步地發展並延伸其在生技製造上的應用。


    The construction of a fusion protein often involves the connecting of two domains or proteins by a peptide linker, which should be designed not to disturb the structures and functions of each domain. Many natural enzymes often consist of two or more distinct modules, which are also connected by a linker peptide. Among which glucoamylase (GA) from Rhizopus oryzae is known to contain a linker of 36 amino acids between an N-terminal starch-binding domain (SBD) and a C-terminal catalytic domain (CD). The SBD possesses a high binding affinity towards raw starch so it was applied in recombinant protein engineering to facilitate the purification of fusion proteins. In this study, enhanced green fluorescent protein (eGFP) was fused with SBD and a few linker variants, including the original linker from R. oryzae GA, in order to investigate the effects of different linker peptides on the expression and purification of fusion proteins, and the SBD and eGFP modules were shuffled between the N- and C- termini while constructing the fusion proteins. According to the results of binding assays, when the linker was located at the N-terminus of the SBD, the starch-binding capacity of SBD was reduced as the Bmax values of the fusion proteins containing an SBD at the C-terminus were lower than those of the fusion proteins containing an SBD at the N-terminus, thus it is more favorable to apply this SBD as an N-terminal affinity tag. On the contrary, the Kd values of all fusion proteins were quite similar, as they were determined to be in the same range (10-6 M level). Furthermore, two purification procedures using corn starch were developed: stirring method and starch column chromatography. Based on the comparison of the purification analyses of both methods, although the starch adsorption rate was promoted in the former, the yield was significantly improved in the latter. As a result, it was indicated that using starch column chromatography was more effective, and it is prospective to be developed into a commercial purification technique due to its convenience, efficiency and economy.

    中文摘要 I Abstract II Acknowledgement IV Table of Contents V List of Tables VII List of Figures VIII Abbreviations IX 1. Introduction 1 2. Materials and Methods 5 Preparation of competent cells and transformation of E. coli 7 Mini-preparation of plasmid 8 In situ PCR 9 DNA sequencing 9 Expression of fusion protein by E. coli 10 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 11 Determination of protein concentration 11 Preparation of purified fusion proteins by amylose resin chromatography 11 Mass determination 12 Effect of pH on binding ability 12 Effect of temperature on binding ability 13 Time course of adsorption 13 Saturation binding assay 13 Purification by stirring method 14 Purification by starch column chromatography 15 Purification by modified starch column chromatography 16 Detection of fluorescence 17 3. Results 18 Construction and expression of the fusion proteins 18 Production and purification of pure fusion proteins 18 Determination of molecular weight of the fusion proteins 19 Effects of pH and temperature on adsorption to raw starch 20 Adsorption rate of the fusion protein with raw starch 21 Adsorption of the fusion proteins to raw starch 22 Purification of the fusion protein containing SBD at the N-terminus 24 Purification of the fusion protein containing SBD at the C-terminus 25 Purification by modified starch column chromatography 27 4. Discussion 28 5. Reference 37 6. Tables 45 7. Figures 56 8. Appendix 72

    1 Gokhale, R. S. and Khosla, C. (2000) Role of linkers in communication between protein modules. Curr Opin Chem Biol 4, 22-27
    2 Cornett, C. A., Fang, T. Y., Reilly, P. J. and Ford, C. (2003) Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Eng 16, 521-529
    3 Reddy, N. S., Nimmagadda, A. and Rao, K. R. S. S. (2003) An overview of the microbial α-amylase family. African Journal of Biotechnology 2, 645-648
    4 Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P. and Svensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543, 275-293
    5 Murphy, M. B. and Doyle, S. A. (2005) High-throughput purification of hexahistidine-tagged proteins expressed in E. coli. Methods Mol Biol 310, 123-130
    6 Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31-40
    7 Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60, 523-533
    8 Hearn, M. T. and Acosta, D. (2001) Applications of novel affinity cassette methods: use of peptide fusion handles for the purification of recombinant proteins. J Mol Recognit 14, 323-369
    9 Hedhammar, M., Gräslund, T. and Hober, S. (2005) Protein Engineering Strategies for Selective Protein Purificaiton. Chemical Engineering & Technology 28, 1315-1325
    10 Argos, P. (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211, 943-958
    11 Alfthan, K., Takkinen, K., Sizmann, D., Soderlund, H. and Teeri, T. T. (1995) Properties of a single-chain antibody containing different linker peptides. Protein Eng 8, 725-731
    12 Crasto, C. J. and Feng, J. A. (2000) LINKER: a program to generate linker sequences for fusion proteins. Protein Eng 13, 309-312
    13 Williamson, G., Belshaw, N. J., Noel, T. R., Ring, S. G. and Williamson, M. P. (1992) O-glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride. Eur J Biochem 207, 661-670
    14 Denman, S., Xue, G. P. and Patel, B. (1996) Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol 62, 1889-1896
    15 Gustavsson, M., Lehtio, J., Denman, S., Teeri, T. T., Hult, K. and Martinelle, M. (2001) Stable linker peptides for a cellulose-binding domain-lipase fusion protein expressed in Pichia pastoris. Protein Eng 14, 711-715
    16 Tanaka, Y., Ashikari, T., Nakamura, N., Kiuchi, N., Shibano, Y., Amachi, T. and Yoshizumi, H. (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agricultural and Biological Chemistry
    17 Dieryck, W., Noubhani, A. M., Coulon, D. and Santarelli, X. (2003) Cloning, expression and two-step purification of recombinant His-tag enhanced green fluorescent protein over-expressed in Escherichia coli. J Chromatogr B Analyt Technol Biomed Life Sci 786, 153-159
    18 Cormack, B. P., Valdivia, R. H. and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33-38
    19 March, J. C., Rao, G. and Bentley, W. E. (2003) Biotechnological applications of green fluorescent protein. Appl Microbiol Biotechnol 62, 303-315
    20 Arai, R., Ueda, H., Kitayama, A., Kamiya, N. and Nagamune, T. (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14, 529-532
    21 Ljungquist, C., Breitholtz, A., Brink-Nilsson, H., Moks, T., Uhlen, M. and Nilsson, B. (1989) Immobilization and affinity purification of recombinant proteins using histidine peptide fusions. Eur J Biochem 186, 563-569
    22 David Chen, J.-Y. K., Anne Doody, Matthew Delisa, and David Putnam (2006) Engineering Outer Membrane Vesibles for Gene Delivery. In The 2006 Annual Meeting San Francisco, California, USA
    23 Malin Gustavasson, J. L., Stuart Denman, Tuula T. Teeri, Karl Hult and Mats Marinelle (2001) Stable linker peptides for a cellulose-binding domain-lipase fusion protein expressed in Pichia pastoris. Protein Engineering 14, 711-715
    24 Mandel, M. and Higa, A. (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159-162
    25 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
    26 Swillens, S. (1995) Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis Molecular Pharmacology 47, 1197-1203
    27 Fang, T. Y., Lin, L. L. and Hsu, W. H. (1994) Recovery of isoamylase from Pseudomonas amyloderamosa by adsorption-elution on raw starch. Enzyme and Microbial Technology 16, 247-252
    28 Lin, L. L., Fang, T. Y., Chu, W. S. and Hsu, W. H. (1994) Improved elution of isoamylase adsorbed on raw starch and the preservation of purified enzyme. Letters in Applied Microbiology 19, 383-385
    29 Hicketier, M. and Buchholz, K. (2002) Fluidized bed adsorption of cephalosporin C. J Biotechnol 93, 253-268
    30 Roy, I., Sastry, M. S., Johri, B. N. and Gupta, M. N. (2000) Purification of alpha-amylase isoenzymes from Scytalidium thermophilum on a fluidized bed of alginate beads followed by concanavalin A-agarose column chromatography. Protein Expr Purif 20, 162-168
    31 Bjellqvist, B., Hughes, G. J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J. C., Frutiger, S. and Hochstrasser, D. (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14, 1023-1031
    32 Chou, W.-I. (2006) Structural and Functional Characterization of the Family 21 Carbohydrate Binding Module of Glucoamylase from Rhizopus oryzae. In College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
    33 Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K. and Chang, M. D. (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 396, 469-477
    34 Millwood, R. J., Halfhill, M. D., Harkins, D., Russotti, R. and Stewart, C. N., Jr. (2003) Instrumentation and methodology for quantifying GFP fluorescence in intact plant organs. Biotechniques 34, 638-643
    35 Richards, H. A., Halfhill, M. D., Millwood, R. J. and Stewart, C. N., Jr. (2003) Quantitative GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants. Plant Cell Rep 22, 117-121
    36 Hack, N. J., Billups, B., Guthrie, P. B., Rogers, J. H., Muir, E. M., Parks, T. N. and Kater, S. B. (2000) Green fluorescent protein as a quantitative tool. J Neurosci Methods 95, 177-184
    37 Damia, B. K. and Nikolov, Z. L. (1991) Characterization of glucoamylase adsorption to raw starch. Enzyme and Microbial Technology 13, 982-990
    38 Saha, B. C. and Ueda, S. (1983) Raw starch adsorption, elution and digestion behaviour of glucoamylase of Rhizopus niveus. Journal of Fermentation and Technology 61, 67-72
    39 Boraston, A. B., Bolam, D. N., Gilbert, H. J. and Davies, G. J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382, 769-781
    40 Guan, L., Hu, Y. and Kaback, H. R. (2003) Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42, 1377-1382
    41 Ponyi, T., Szabo, L., Nagy, T., Orosz, L., Simpson, P. J., Williamson, M. P. and Gilbert, H. J. (2000) Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry 39, 985-991
    42 Barondeau, D. P., Kassmann, C. J., Tainer, J. A. and Getzoff, E. D. (2006) Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. J Am Chem Soc 128, 4685-4693
    43 Gailliot, F. P., Gleason, C., Wilson, J. J. and Zwarick, J. (1990) Fluidized bed adsorption for whole broth extraction. Biotechnol Prog 6, 370-375
    44 Chen, L. J., Ford, C., Kusnadi, A. and Nikolov, Z. L. (1991) Improved adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding domain from Aspergillus glucoamylase. Biotechnol Prog 7, 225-229
    45 Huang, H. B., Chi, M. C., Hsu, W. H., Liang, W. C. and Lin, L. L. (2005) Construction and one-step purification of Bacillus kaustophilus leucine aminopeptidase fused to the starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase. Bioprocess Biosyst Eng 27, 389-398
    46 Chang-Chih Chen, P.-H. W., Ching-Tsan Huang, Kou-Joan Cheng (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme and Microbial Technology 35, 315-320
    47 Sachdev, D. and Chirgwin, J. M. (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 326, 312-321
    48 Srinivasan, U. and Bell, J. A. (1998) A convenient method for affinity purification of maltose binding protein fusions. J Biotechnol 62, 163-167
    49 Aitken, R., Gilchrist, J. and Sinclair, M. C. (1994) Vectors to facilitate the creation of translational fusions to the maltose-binding protein of Escherichia coli. Gene 144, 69-73
    50 Szweda, P., Pladzyk, R., Kotlowski, R. and Kur, J. (2001) Cloning, expression, and purification of the Staphylococcus simulans lysostaphin using the intein-chitin-binding domain (CBD) system. Protein Expr Purif 22, 467-471
    51 Semimaru, T., Goto, M., Furukawa, K. and Hayashida, S. (1995) Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Appl Environ Microbiol 61, 2885-2890
    52 Sauer, J., Christensen, T., Frandsen, T. P., Mirgorodskaya, E., McGuire, K. A., Driguez, H., Roepstorff, P., Sigurskjold, B. W. and Svensson, B. (2001) Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Biochemistry 40, 9336-9346
    53 Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. and Barton, G. J. (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892-893
    54 Wood, D. W. (2003) Simplified protein purification using engineered self-cleaving affinity tags. Journal of Chemical Technology and Biotechnology 78, 103-110
    55 Jenny, R. J., Mann, K. G. and Lundblad, R. L. (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 31, 1-11
    56 Bolivar, F., Betlach, M. C., Heyneker, H. L., Shine, J., Rodriguez, R. L. and Boyer, H. W. (1977) Origin of replication of pBR345 plasmid DNA. Proc Natl Acad Sci U S A 74, 5265-5269
    57 Messing, J. and Vieira, J. (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19, 269-276
    58 Vieira, J. and Messing, J. (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153, 3-11
    59 Lin-Chao, S., Chen, W. T. and Wong, T. T. (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6, 3385-3393
    60 Chen, L. J., Ford, C. and Nikolov, Z. (1991) Adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Gene 99, 121-126
    61 Miller, D. M., 3rd, Olson, J. S., Pflugrath, J. W. and Quiocho, F. A. (1983) Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. J Biol Chem 258, 13665-13672
    62 Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H. and Xu, M. Q. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271-281
    63 Tomme, P., Boraston, A., McLean, B., Kormos, J., Creagh, A. L., Sturch, K., Gilkes, N. R., Haynes, C. A., Warren, R. A. and Kilburn, D. G. (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl 715, 283-296

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE