簡易檢索 / 詳目顯示

研究生: 鍾姍諭
Chung. Shan Yu
論文名稱: 鋸齒狀表面迷你流道熱沉之沸騰熱傳的強化
The enhancement of boiling heat transfer in a minichannel heat sink with saw-tooth structure on channel surface
指導教授: 潘欽
Pan. Chin
口試委員: 林清發
Lin. Tsing Fa
陳紹文
Chen. Shao Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 沸騰熱傳迷你流道齒狀表面
外文關鍵詞: boiling heat transfer, minichannel, saw-tooth structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子產品尺寸愈來愈小,強化散熱能力為目前重要趨勢。本研究探討鋸齒狀表面迷你流道熱沉之沸騰熱傳的強化。本研究在熱沉上設計迷你尺寸的鋸齒狀表面結構,熱沉共含有四條水力直徑為0.8 mm之迷你流道,材料以無氧銅作為流道基底。熱沉底面面積為90 mm × 5 mm。鋸齒狀結構以線切割方式加工。鋸齒狀結構尖端間隔1 mm。為了環境之永續發展,本研究以低全球暖化潛勢的HFE-7100為工作流體分別探討三種表面結構(平流道、順齒狀流道、逆齒狀流道)、三種尖端角度(30、45及60 度)及兩種齒狀高度(0.5與0.75 mm)在質量通率為63 kg/m^2s至285 kg/m^2s情況下的沸騰熱傳現象。
    實驗結果顯示臨界熱通率隨著質量通率的增加而上升,且齒狀結構有助於臨界熱通率的提升。在低質量通率,齒狀結構尖端角度45 ∘與高度0.5 mm的情況之下,順齒及逆齒流道的臨界熱通率與平流道相比,分別提升46.7 %及40.2 %。此結果指出低質量通率時,齒狀結構可顯著提高臨界熱通率。而在高質量通率時,相對於平流道,順齒及逆齒流道的臨界熱通率分別增加1 % 及17.1 %。由此可知,在高質量通率時,逆齒狀結構有助於臨界熱通率的強化。除此之外,逆齒流道齒狀尖端角度60度及高度0.5 mm時,臨界熱通率具最大值,為本研究之最佳設計。


    The dimension of electronic devices become smaller and smaller and it is of significant importance to enhance the heat dissipation from such tiny devices. The present study investigates the boiling heat transfer in a minichannel heat sink with saw-tooth structure on channel surface. The heat sink is comprised of four minichannels with hydraulic diameter of 0.8 mm and made of copper. The dimensions of the base area of the heat sink are 90 mm × 5 mm. The saw-tooth topology on the bottom of minichannel was manufactured by wire-cut EDM. The saw-tooth structure is with a pitch of 1 mm and three different tip angles ( 30 ∘,45 ∘, and 60 ∘) and two different tooth heights (0.5 and 0.75 mm). This study employs HFE-7100 refrigerant, which is of low GWP, as the working fluid to investigate the boiling heat transfer in three kinds of surface structures (plain, parallel saw-tooth and counter saw-tooth). The mass flux ranges from 63 kg/m^2s to 285 kg/m^2s.
    The experimental results show that the critical heat flux increases with increasing mass flux and enhancement of critical heat flux due to saw-tooth structure. For the structure with a tip angle of 45 ∘and tooth height of 0.5 mm. The critical heat flux in the parallel and counter saw-tooth minichannel are greater than that of the plain minichannel by 46.7 % and 40.2 % for a low mass flux of 127 kg/m2s. This indicates that the critical heat flux is significantly enhanced by the saw-tooth structure with either parallel or counter flow design for low mass flux. On the other hand, compared to the plain minichannel, the critical heat flux of the parallel and counter saw-tooth minichannel are increased by 1 % and 17.1 % , respectively, for a large mass flux of 285 kg/m2s. A saw-tooth structure with counter flow design may significantly enhance the critical heat flux. Furthermore, a tip angle of 60 ∘and height 0.5 mm in minichannel with counter flow is found to perform best.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 vii 圖目錄 viii 符號說明表 xii 第一章緒論 1 1.1 研究動機與目的 1 1.2 銅與矽質流道比較 2 1.3 工作流體的選擇 3 1.4 研究方法 5 1.5 論文架構 5 第二章文獻回顧 6 2.1 HFE-7100的沸騰熱傳研究 6 2.2 強化表面的流動沸騰熱傳 8 2.3 幾何參數對雙相流的影響 11 第三章實驗系統與方法 12 3.1 實驗測試段 12 3.1.1 測試段製作 12 3.1.2 測試段組裝 20 3.2 沸騰熱傳實驗環路 22 3.2.1 實驗設備環路 22 3.2.2 實驗儀器 23 3.3 實驗方法與步驟 24 第四章沸騰熱傳數據分析 27 第五章結果與討論 30 5.1 質量通率的影響 30 5.2 不同表面結構的影響 43 5.2.1 不同表面結構在低質量通率的沸騰曲線及流譜 43 5.2.2 不同表面結構在高質量通率的沸騰曲線及流譜 52 5.3 不同齒狀尖端角度的影響 64 5.4 不同齒狀高度的影響 68 第六章結論與建議 73 6.1 本論文研究結果 73 6.2 未來研究建議 74 參考文獻 75 附錄A 實驗數據 80

    1.Mudawar, I., Bharathan, D., Kelly K. and Narumanchi S. (2009). "Two-Phase Spray Cooling of Hybrid Vehicle Electronics." IEEE Transactions on Components and Packaging Technologies 32(2): 501-512.
    2.Jianjun, X., Bingde C., Xiaojun W. (2010). "Prediction of sliding bubble velocity and mechanism of sliding bubble motion along the surface." J. Enhanc. Heat Transfer, 17 (2), pp. 111–124
    3.Liu, D., Lee, P. S. and Garimella, S. V. (2005). "Prediction of the onset of nucleate boiling in microchannel flow." International Journal of Heat and Mass Transfer 48(25-26): 5134-5149.
    4.Lee, P. S. and Garimella, S. V. (2008). "Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays." International Journal of Heat and Mass Transfer 51(3-4): 789-806.
    5.http://www.3m.com/index.html?change=true (3M Company)
    6.http://www51.honeywell.com/honeywell/ (Honeywell Company)
    7.Megahed, A. and Hassan, I. (2009). "Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink." International Journal of Heat and Fluid Flow 30(6): 1171-1182.
    8.Jang, Y., Park, C., Lee, Y. and Kim, Y. (2008). "Flow boiling heat transfer coefficients and pressure drops of FC-72 in small channel heat sinks." International Journal of Refrigeration-Revue Internationale Du Froid 31(6): 1033-1041.
    9.Liu, Z. W., Lin, W. W., and Lee D. J., (2000). "Boiling of HFE-7100 on straight pin fin." Experimental Thermal and Fluid Science 23(1-2): 35-39.
    10.Lee, J. and Mudawar, I. (2009). "Critical heat flux for subcooled flow boiling in micro-channel heat sinks." International Journal of Heat and Mass Transfer 52(13-14): 3341-3352.
    11.Fu, B. R., Lee, C. Y. and Pan, C. (2013). "The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink." International Journal of Heat and Mass Transfer 58(1-2): 53-61.
    12.Wang, C. C., Chang W. J., Dai, C. H ., Lin, Y. T. and Yang, K. S. (2012). "Effect of inclination on the convective boiling performance of a microchannel heat sink using HFE-7100." Experimental Thermal and Fluid Science 36: 143-148.
    13.Yang, K. S., Jeng, Y. R., Huang, C. M. and Wang, C. C. (2011). "Heat Transfer and Flow Pattern Characteristics for HFE-7100 Within Microchannel Heat Sinks." Heat Transfer Engineering 32(7-8): 697-704.
    14.El-Genk, M. S. and Parker, J. L. (2008). "Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling." Energy Conversion and Management 49(4): 733-750.
    15.Khanikar, V., Mudawar, I. and Fisher ,T. (2009). "Effects of carbon nanotube coating on flow boiling in a micro-channel." International Journal of Heat and Mass Transfer 52(15-16): 3805-3817.
    16.Sujith Kumar, C.S., Suresh, S., Lezhi Yang., QiaqinYang, S.Aravind(2014)”Flow boiling heat transfer enhancement using carbon nanotube coatings.”Applied Thermal Engineering 65 166-175
    17.Yang, Y. P., Ji, X. B. and Xu, J. L. (2010). "Pool boiling heat transfer on copper foam covers with water as working fluid." International Journal of Thermal Sciences 49(7): 1227-1237.
    18.Ammerman, C. N., You, S. M. (2011). "Enhancing small-channel convective boiling performance using a microporous surface coating "J. Heat Transfer, 123, pp. 976–983
    19.Jones, J., Garimella, V. "Surface roughness effects on flow boiling in microchannels" West Lafayette, IN 47907-2088
    20.Matthew Law, Poh-Seng Lee(2015)"A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels" International Journal of Heat and Mass Transfer 85 : 797–810
    21.Hasan, M. I., (2014)'Investigation of Flow and Heat Transfer Characteristics in Micro Pin Fin Heat Sink with Nanofluid', Applied Thermal Engineering, 63, 598-607
    22.Honda, H., Takamatsu, H., Wei, J.J. " Effect of the size of micro-pin-fin on boiling heat transfer from silicon chips immersed in FC-72", in: Proceedings of 12th International Heat Transfer Conference, Grenoble, France, vol. 4, 2002, pp. 75–80
    23.Wei, J. J. and Honda, H. (2003). "Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72." International Journal of Heat and Mass Transfer 46(21): 4059-4070.
    24.Lie, Y. M., Ke, J. H., Chang, W. R., Cheng, T. C. and Lin, T. F. (2007). "Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip." International Journal of Heat and Mass Transfer 50(19-20): 3862-3876.
    25.Zhang, X. Y., Zhang, X. G., Chen, Y. G. and Yuan ,X. L., (2008) "Heat Transfer Characteristics for Evaporation of R417a Flowing inside Horizontal Smooth and Internally Grooved Tubes", Energy Conversion and Management, 49, 1731-39.
    26.Honda, H. and Wei, J. J. (2004). "Enhanced boiling heat transfer from electronic components by use of surface microstructures." Experimental Thermal and Fluid Science 28(2-3): 159-169.
    27.Linke, H., Aleman, B.J., Melling, L.D., Taormina, M.J., Francis, M.J., Francis, M.J., DowHygelund, C.C., Narayanan, V., Taylor, R.P., Stout, A. (2006) Self-propelled Leidenfrost droplets. Phys Rev Lett 96:154502
    28.Ok, J. T., Lopez-Ona, E., Nikitopoulos, D. E., Wong, H. and Park, S. (2011). "Propulsion of droplets on micro- and sub-micron ratchet surfaces in the Leidenfrost temperature regime." Microfluidics and Nanofluidics 10(5): 1045-1054.
    29.Bowers, M. B.and Mudawar, I. (1994)."High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks."Int. J, Heat Muss Transfer. Vol. 37, No. 2, pp. 321-332
    30.Ulrich Soupremanien, Stephane Le Person, Michel Favre-Marinet, Yann Bultel(2011)" Influence of the aspect ratio on boiling flows in rectangular mini-channels." Experimental Thermal and Fluid Science 35 (2011) 797–809
    31.Peng, X. F., Hu, H. Y., and Wang, B. X. (1998). "Flow boiling through V-shape microchannels." Experimental Heat Transfer 11(1): 87-100.
    32.Lee, P.C., Tseng, F.G., Chin Pan, (2004) "Bubble dynamics in microchannels, (I) Single microchannel", Int. J. Heat Mass Transfer, vol.47, 5575–5589
    33.Alam, T., Lee, P. S., Yap, C. R. and Jin, L. W. (2012). "Experimental investigation of local flow boiling heat transfer and pressure drop characteristics in microgap channel." International Journal of Multiphase Flow 42: 164-174.
    34.Law, M., Lee, P.S. and Balasubramanian, K. (2014). "Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels." International Journal of Heat and Mass Transfer 76: 419-431.
    35.Bertsch, S. S., Groll, E. A. and Garimella, S. V. (2009). "Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels." International Journal of Multiphase Flow35: 142-154.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE