簡易檢索 / 詳目顯示

研究生: 蕭皓中
Shiau, Hau-Jung
論文名稱: 使用訊息乘載前導符號和空間多功的低密度奇偶檢查編碼非同調時空調變
LDPC coded noncoherent space-time modulation using information-bearing pilot and spacial multiplexing
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員: 唐宏驊
魏瑞益
王忠炫
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 58
中文關鍵詞: 非同調前導符號低密度奇偶檢查碼外部訊息轉換圖
外文關鍵詞: Noncoherent, pilot, LDPC, EXIT chart
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在這個論文中, 我們提出兩種方法來改善非同調系統的效能. 一種是根據外在訊息轉換圖(EXIT chart), 而另一種則是使用碼自交錯放置法. 不規則低密度奇偶碼(irregular LDPC code) 已廣泛地被運來用最佳化各種通訊系統. 然而在某些情況下, 根據傳統外在訊息轉換圖的最佳化過程使用的高斯假設將失去它的準確性, 導致實際與預測的極限產生錯誤. 我們可以看到在使用訊息乘載前導符號和空間多工的分同調時空系統中, 軟質的機率密度函數和高斯函數有很大的區別. 我們因此設計一種有效的錯誤率最佳化方法. 使用我們提出的最佳話法比起傳統的最佳化法更能準確的預測極限及得到更好得效能. 對於碼交錯放置法, 它使用額外的前導符號來幫助解調及解碼, 隨著不同的碼字交錯器, 鄰近的碼字將收到不同的額外訊息因而造成不同的結果. 最後, 我們使用個別的外在訊息轉換圖來解釋它們造成的結果.


    In this thesis, we propose using two methods to improve the performanceof a noncoherent system using information-bearing pilot and spacial multiplexing. The former is based on EXIT(extrinsic information transfer) chart and the latter is based on the codeword-interleaving strategy. It is known that irregular low-density parity-check (LDPC) code is widely used for optimizing performance in various communication systems. However, in some cases, the Gaussian approximation for the soft values used in the conventional
    EXIT-chart-based optimization procedure may lose its accuracy, and result in a large prediction error for the convergence threshold. It can be shown that for a noncoherent space-time system using information-bearing pilots and spatial multiplexing, the probability density function of the soft values is far from Gaussian. We have therefore designed an efficient performance optimization method. Compared to the use of conventional optimization
    method, using the proposed method provides a more accurate prediction of convergence threshold and better system performance. For the codewordinterleaved scheme, which uses extra pilots to help demap and decode, we introduce a method that can be used to extend it to our system. With a different codeword interleaver, the extra information being passed to the adjacent codeword may be different and, hence, produce different results.

    1 Introduction 1 2 Review of turbo coded noncoherent space-time modulation using information-bearing pilots and spatial multiplexing [11] 4 2.1 Block Fading Channel Model . . . . . . . . . . . . . . . . . . . 5 2.2 Transmission Architecture . . . . . . . . . . . . . . . . . . . . 5 2.3 Iterative Detection And Decoding (IDD) Receiver . . . . . . . 7 2.3.1 Noncoherent Demapper for the “Information-bearing” Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 Coherent Demappers for SM Signals . . . . . . . . . . 11 3 An EXIT-chart-based Design Method for an LDPC Coded Noncoherent MIMO Syetem 13 3.1 Review of the Conventional EXIT Curves Generation Method 14 3.2 Proposed EXIT-chart-based design Method for an LDPC coded Noncohernet MIMO System . . . . . . . . . . . . . . . . . . . 16 3.2.1 Observations of the Soft Information . . . . . . . . . . 16 i 3.2.2 Proposed EXIT Curves Generation Method . . . . . . 18 3.2.3 Setting the Variable Node Degree . . . . . . . . . . . . 20 3.2.4 Proposed Code Search Algorithm . . . . . . . . . . . . 25 3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Code Parameters . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 BER Results . . . . . . . . . . . . . . . . . . . . . . . 26 4 Extension of the Codeword-Interleavered Transmission/Receiving Scheme 31 4.1 Review of the Codeword-Interleavered Transmission/Receiving Scheme Proposed in [14] . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 Block Modulator and Demodulator . . . . . . . . . . . 33 4.1.3 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.4 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Extension of the Codeword-Interleaved Transmission/Receiving Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Code Parameters . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 BER Results . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.3 EXIT Chart Analysis . . . . . . . . . . . . . . . . . . . 48 4.3.4 LDPC coded codeword-interleaved system . . . . . . . 50 5 Conclusion 52 Bibliography 53

    [1] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
    codes,” IEEE Trans. on Commun., vol. 49, no. 10, pp. 1727-
    1737, Oct. 2001.
    [2] S. Ahmed, T. Ratnarajah, M. Sellathurai, and C. F. N. Cowan, “Iterative
    receivers for MIMO-OFDM and their convergence behavior,” IEEE
    Trans. on Vehicular Technology, vol. 58, no. 1, pp. 461-468, Jan. 2009.
    [3] A. Ashikhmin, G. Kramer, and S. ten Brink, “Design of low-density
    parity-check codes for modulation and detection,” IEEE Trans. Commun.,
    vol. 52, no. 4, pp. 670-678, Apr. 2004.
    [4] J. Hou, P. H. Siegel and L. B. Milstein, “Design of multi-input multioutput
    systems based on low-density parity-check codes,” IEEE Trans.
    Commun., vol. 53, no. 4, pp. 601-611, Apr. 2005.
    [5] T. J. Richardson and R. Urbanke, “The capacity of low-density paritycheck
    codes under message-passing decoding,” IEEE Trans. Inform. Theory,
    vol. 47, pp. 599-618, Feb. 2001.
    [6] T. Richardson and R. Urbanke, “Design of capacity-approaching irregular
    low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47,
    pp. 619-637, Feb. 2001.
    [7] M. Ardakani and F. R. Kschischang, “A more accurate one-dimensional
    analysis and design of irregular LDPC codes,” IEEE Trans. Commun.,
    vol. 52, no. 12, pp. 2106-2114, Dec. 2004.
    [8] A. Ibing and H. Boche, “On predicting convergence of iterative MIMO
    detection-decoding With concatenated codes,” IEEE Trans. on Vehicular
    Technology, vol. 59, no. 8, pp. 4134-4139, Oct. 2010.
    [9] I. Bahceci and T. M. Duman, “Combined turbo coding and unitary spacetime
    modulation,” IEEE Trans. on Commun., vol. 50, no. 8, pp. 1244-
    1249, Aug. 2002.
    [10] N. H. Tran, H. H. Nguyen, and T. Le-Ngoc, “Coded unitary spacetime
    modulation with iterative decoding: error performance and mapping
    design,” IEEE Trans. on Commun., vol. 55, no. 4, pp. 703-716, Apr. 2007.
    [11] Yen-Ming Chen and Yeong-Luh Ueng, “Trubo coded noncoherent spacetime
    modulation using information-bearing pilots and spatial multiplexing,”
    accepted to appear in IEEE Trans. Commun.
    [12] W. Zhao, G. Leus, and G. B. Giannakis, “Orthogonal design of unitary
    constellations for uncoded and trellis-coded noncoherent space-time systems,”
    IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 1319-1327, May
    2004.
    [13] Ying-Chen Chao, “A Codeword-Interleaved Transmission/Receiving
    Scheme for Noncoherent Communications,” master thesis, Department
    of Electronice Engineering, National Tsing Hua Universit, Hsinchu, Taiwan,
    R.O.C., July 2009.
    [14] Yen-Ming Chen, Yeong-Luh Ueng, and Ying-Chen Chao, “A Noncoherent
    Coded MPSK Scheme with Near-Capacity Performance for Channels
    with Fast Phase Variation,”
    [15] R. R. Chen, R. Koetter, D. Agrawal, and U. Madhow, “Joint demodulation
    and decoding for the noncoherent block fading channel: a practical
    framework for approaching channel capacity,” IEEE Trans. Commun.,
    vol. 51, no. 10, pp. 1676-1689, Oct. 2003.
    [16] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur.
    Trans. Telecommun., vol. 10, pp. 585-595, Nov. 1999.
    [17] G. J. Foschini, “Layered space-time architecture for wireless communications
    in a fading environment when using multielement antennas,” Bell
    Labs Tech. J., vol. 1, no. 2, pp.41-59, Autumn 1996.
    [18] A. Krishnamoorthy and A. Anastasopoulos, “Code and receiver design
    for the noncoherent fast-fading cha nnel,” IEEE J. Select. Areas Commun.,
    vol. 23, no. 9, pp. 1769-1778, Sept. 2005.
    [19] R. O’Neill and L. B. Lopes, “Envelope Variations and Spectral Splatter
    in Clipped Multicarrier Signals,” Proc. IEEE PIMRC ’95, Toronto,
    Canada, Sept. 1995, pp. 71-75.
    [20] X. Li and L. J. Cimini, Jr., “Effect of Clipping and Filtering on the
    Performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, May 1998,
    pp. 131-33.
    [21] J. Tellado, Peak to Average Power Reduction for Multicarrier Modulation,
    Ph.D. dissertation, Stanford Univ., 2000.
    [22] B. S. Krongold and D. L. Jones, “PAR Reduction in OFDM via Active
    Constellation Extension,” IEEE Trans. Broadcast., vol. 49, no. 3, Sept.
    2003, pp. 258-68.
    [23] L. J. Cimini, Jr. and N. R. Sollenberger, “Peak-to-Average Power Ratio
    Reduction of an OFDM Signal Using Partial Transmit Sequences,” IEEE
    Commun. Lett., vol. 4, no. 3, Mar. 2000, pp. 86 - 88.
    [24] G. R. Hill, M. Faulkner, and J. Singh, “Reducing the peak-to-average
    power ratio in OFDM by cyclically shifting partial transmit sequences,”
    Elect. Lett., vol. 36, pp. 560.561, Mar. 2000.
    [25] C. Tellambura, “Improved phase factor computation for the PAR reduction
    of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4,
    Apr. 2001, pp. 135 - 137.
    [26] Wong Sai Ho, A.S. Madhukumar, and F. Chin, “Peakto- average power
    reduction using partial transmit sequences: a suboptimal approach based
    on dual layered phase sequencing,” IEEE Transactions on Broadcasting,
    vol. 49, no. 2, pp. 225-231, June 2003.
    [27] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction
    of peak-to-average power ratio of OFDM signal,” Electron. Lett.
    Vol. 36, pp. 1226-1228, June 2000.
    [28] B. Wu, S. Cheng, and H. Wang, “Trellis factor search PTS for PAPR
    reduction in OFDM,” in 16th IEEE Int. Symp. on Personal, Indoor and
    Mobile Radio Commun. (PIMRC), vol. 4, Sept. 11-14, 2005, pp. 2514-
    2517.
    [29] R. R. Chen, R. Koetter, U. Madhow, and D. Agrawal, “Joint noncoherent
    demodulation and decoing for the block fading channel: A practical
    framework for approaching Shannon capacity,” IEEE Trans. Commun.,
    vol. 51, pp. 1676-1689, Oct. 2003.
    [30] N. Jacobsen and U. Madhow, “Coded noncoherent communication with
    amplitude/phase modulation: from Shannon theory to practical architectures,”
    IEEE Trans. Commun., vol. 56, Dec. 2008.
    [31] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
    codes for minimizing symbol error rate,”IEEE Trans. Inform. Theory,
    vol. IT-20, pp. 284-287, Mar. 1974.
    [32] Yung-Chih Tsai; Yeong-Luh Ueng, “Multiple-Candidate Separation for
    PTS-Based OFDM Systems by Turbo Decoding,” IEEE Veh. Tech. Conference(
    VTC 2010), Spring. 2010, pp. 1-5.
    [33] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit
    diversity,” IEEE J. Select. Areas Commun., vol. 18, pp. 1169-1174,
    July 2000.
    [34] C.-S. Hwang, S.H. Nam, J. Chung, and V. Tarokh. “Differential
    space-time block codes using nonconstant modulus constellations.” IEEE
    Transactions on Signal Processing, 51(11): pp. 2955-2964, November
    2003.
    [35] H. Jafarkhani and V. Tarokh, “Multiple transmit antenna differential detection
    from generalized orthogonal designs,” IEEE Trans. Inform. Theory,
    vol. 47, pp. 2626-2631, Sept. 2001.
    [36] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna
    communication link in rayleigh flat fading,” IEEE Trans. Inform. Theory,
    vol. 45, pp. 139-157, Jan. 1999.
    [37] B. Hochwald and T. Marzetta, “Unitary space-time modulation for
    multiple- antenna communications in rayleigh flat fading,” IEEE Trans.
    Inform. Theory, vol. 46, pp. 543-564, Mar. 2000.
    [38] B. M. Hochwald, T.L. Marzetta, T.J. Richardson, W. Sweldens, and R.
    Urbanke, “Systematic design of unitary spacr-time constellations,” IEEE
    Trans. Inf. Theory, vol. 46, no. 9, pp. 1962-1973, Sep. 2000.
    [39] S. M. Kay, Fundamentals of Statistical Signal Processing: Vol I. Estimation
    Theory, Prentice-Hall, 1993.
    [40] K. M. Abadir and J. R. Magnus. Matrix Algebra, Cambridge University
    Press, 2005.
    [41] I. Bahceci, and T. M. Duman, “Combined turbo coding and unitary
    space-time modulation,” IEEE Trans. on Commun., vol. 50, no. 8, pp.
    1244-1249, Aug. 2002.
    [42] W. Zhao, G. Leus, and G. B. Giannakis, “Orthogonal design of unitary
    constellations for uncoded and trellis-coded noncoherent space-time systems,”
    IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 1319-1327, May
    2004.
    [43] S. M. Kay, Fundamentals of Statistical Signal Processing: Vol I. Estimation
    Theory, Prentice-Hall, 1993.
    [44] Y. Huang and J. A. Ritcey, “Joint iterative channel estimation and decoding
    for bit-interleaved coded modulation over correlated fading channels,”
    IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2549-2588, Sep.
    2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE