簡易檢索 / 詳目顯示

研究生: 林宗億
Tsung-Yi Lin
論文名稱: 混合型破裂韌度的預測
The Prediction of Mixed-mode Fracture Toughness
指導教授: 蔣長榮
Chun-Ron Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 破裂韌度最大畸變能準則最大正向應力準則混合型裂縫牛頓-拉夫遜法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對在實際工程中最常見的混合型Ⅰ/Ⅱ(mixed-mode
    Ⅰ/Ⅱ)受力情況的裂縫,從微觀力學的角度,藉由裂縫前端的應力及應變分布,輔以適當破壞準則來預測裂縫受到純粹modeⅠ、mode
    Ⅱ及混合型Ⅰ/Ⅱ外力負載下的破裂韌度值(fracture toughness)。本文利用最大正向應力破壞準則與Von Mises等效應變破壞準則所預測出的混合型破裂韌度值和裂縫成長方向與既有文獻在實際實驗所求出的數據做比較,發現Von Mises等效應變破壞準則較符合實際實驗所求的裂縫成長方向。在改變裂縫前端曲率半徑值的情形下,利用前述兩種不同的破壞準則去預測純粹modeI的破裂韌度值中可以發現其破裂韌度值會隨著半徑的縮小而減少。最後將本文所預測出的裂縫破壞角度與實際實驗相比較之下,可以發現實際實驗的結果在KⅠ與KⅡ比值小於1時,其裂縫破壞角度發生在水平方向,而本文所模擬的材料(不鏽鋼)其預測出的裂縫破壞角度則是發生在59.35∘到65.68∘。產生此差異的可能原因包括:(1)實驗設備及試片夾具設計並無法實現純modeⅡ的負載;(2)本文所用的破壞準則是以某一點的應力或應變做為參考;而材料的破壞,特別是裂縫成長方向可能需要考慮該點及其鄰近的應力或應變狀態,甚至要考慮雖不是應力或應變的最大處但卻有較大影響範圍的臨界點。


    Abstract The thesis focus on the mixed-mode Ⅰ/Ⅱ crack which is very common in fracture problem. Study the stress and strain around crack tip by micro mechanics method and exploit the fracture criterion to predict the fracture toughness of pure modeⅠ, pure modeⅡ and mixed-mode Ⅰ/Ⅱ.Two fracture criterion, maximum principle stress theory(MPST) and maximum distortion energy theory(MDET), are used in this thesis. The fracture toughness of mixed-mode Ⅰ/Ⅱ by MDET is similar to the result of experiment.When using both fracture criterions to predict the fracture toughness of pure modeⅠ,the smaller radius the crack is,the the smaller fracture toughness of pure modeⅠ is. It isn't related to the fracture criterions we use.We compare the crack growth angle of pure modeⅡ we predict to the experiment result, and discover that the result don't match. The possible reasons are:(1)The experiment equip couldn't perfectly simulate the condition of pure modeⅡ.(2)The fracture criterions we use are merely focus on certain point's stress or strain, but the crack growth angle of material isn'tII only related to the certain point but also related to the proximity of the certain point.So it's possible that crack growth don't occur on the point of maximum stress or strain.

    目 錄 頁 次 中文摘要…………………………………………………………... Ⅰ 英文摘要…………………………………………………………... Ⅱ 目錄………………………………………………………............... Ⅳ 圖表目錄…………………………………………………………… Ⅵ 第一章 緒論…………………………………………………….... 1 1.1 前言…………………………………………………………….. 1 1.2 研究動機………………………………………………............... 2 1.3 文獻回顧………………………………………………………... 4 第二章 基本理論………………………………………….. 6 2.1 破裂力學理論……………………………………………........ 6 2.1-1 線彈性破裂力學...........................................................式………………………………………………….. 6 2.1-2 裂縫尖端附近的應力場................................................區…………………………………………….. 7 2.1-3 裂縫成長的臨界條件................................................... 9 2.2 破壞準則………………………....………………………... 11 2.2-1 最大畸變能準則.............................................................. 11 2.2-2 最大正向應力準則.......................................................... 13 2.3 彈塑性力學常用的簡化力學模型............................................. 14 2.4 硬化規則..........................................………………………....... 15 2.4-1等向硬化…………………………………....................... 16 2.4-2隨動硬化…………………………………....................... 16 第三章 有限元素法.................……………………………..…... 17 3.1 有限元素法基本理論……………………………………….... 17 3.2 有限元素分析軟體『ANSYS』簡介………........................... 20 3.3 ANSYS的非線性分析................................................................ 21 第四章 模型建立與分析……………………………….............. 24 4.1 問題描述………………………..………………………………. 24 4.2 模型建立………………………………………………………... 24 4.3 模型分析………………………………………………………... 25 4.4 計算流程………………………………………........................... 26 第五章 結果與討論……………………………........................... 27 5.1 二種不同破壞準則的預測結果………………........................... 27 5.2 混合型負載對於裂縫成長角度的影響…….............................. 28 5.3 裂縫前端曲率半徑值對所預測之破裂韌度值的影響............... 29 5.4 所預測之混合型破裂韌度值與實際實驗的比較....................... 32 第六章 結論………………...…………………………..................做……………………………………………………... 33 參考文獻…………………………………………………………… 35 圖 表 目 錄 表4.1 不鏽鋼材料常數……………………………........... 38 表5.1 不鏽鋼在不同KⅠ:KⅡ比例下發生破壞時與裂縫原始方向的夾角.................................................. 38 表5.2 鋁材料常數…………………………………………... 39 表5.3 依據Von Mises等效應變破壞準則在ρ=0mm時的KQ值... 39 表5.4 依據最大正向應力破壞準則在ρ=0mm時的KQ值........ 40 圖2.1 破裂力學的三種不同破裂模式…………........... 41 圖2.2 無窮平板含中央裂縫示意圖…………………......... 41 圖2.3 裂縫前端任意點的應力狀態示意圖............... 42 圖2.4 混合型mixed-modeⅠ/Ⅱ裂縫示意圖................ 42 圖2.5 混合型破裂韌度圖............................. 43 圖2-6 具有三軸向應力之元素模型....................... 43 圖2-7 Von Mises橢圓………….......................... 44 圖2.8 最大正向應力準則損壞理論圖.................. 44 圖2.9 理想彈塑性力學模型…………..................... 45 圖2.10 線性硬化彈塑性力學模型......................... 45 圖2.11 冪硬化彈塑性力學模型. ......................... 46 圖2.12單軸向受力時,等向硬化準則和隨動硬化準則的差異.. 46 圖2.13雙軸向受力時,等向硬化準則應用在Von Mises降伏準 則上………………………………………….................. 47 圖2.14雙軸向受力時,隨動硬化準則應用在Von Mises降伏準 則上………………………………………….................. 47 圖3.1 PLANE82元素示意圖.............................. 48 圖3.2 Newton-Raphson method………………………......... 48 圖4.1 分析模型示意圖………………….................... 49 圖4.2裂縫前端水平方向位移收斂圖………................. 49 圖4.3裂縫前端垂直方向位移收斂圖…………............... 50 圖4.4元素受力示意圖................................... 50 圖4.5 modeⅠ模型邊界受力圖............................ 51 圖4.6 modeⅡ模型邊界受力圖............................ 51 圖4.7混合型模型邊界受力圖(KⅠ:KⅡ=1:1)圖………….... 52 圖4.8 參考座標………………............................ 52 圖4.9計算流程圖……………............................. 53 圖5.1最大正向應力破壞準則下混合型破裂韌度圖........... 54 圖5.2 Von Mises等效應變破壞準則下混合型破裂韌度圖..... 54 圖5.3材料(不鏽鋼)發生破壞時與裂縫原始方向的夾角..... 55 圖5.4純粹modeⅠ,材料(不鏽鋼)發生破壞時變形圖....... 55 圖5.5 KⅠ:KⅡ=3:1,材料(不鏽鋼)發生破壞時變形圖....56 圖5.6 KⅠ:KⅡ=2:1,材料(不鏽鋼)發生破壞時變形圖.. 56 圖5.7 KⅠ:KⅡ=1:1,材料(不鏽鋼)發生破壞時變形圖... 57 圖5.8 KⅠ:KⅡ=1:2,材料(不鏽鋼)發生破壞時變形圖.. 57 圖5.9 KⅠ:KⅡ=1:3,材料(不鏽鋼)發生破壞時變形圖... 58 圖5.10純粹modeⅡ,材料(不鏽鋼)發生破壞時變形圖...... 58 圖5.11試片受到混合型負載示意圖....................... 59 圖5.12試片受到混合型負載時實際發生破壞的情況.......... 59 圖5.13依據Von Mises等效應變破壞準則,材料為線性彈性行 為之破裂韌度預測值.................................... 60 圖5.14依據Von Mises等效應變破壞準則,裂縫前端曲率半徑 值開根號時材料為線性彈性行為之破裂韌度預測值......... 60 圖5.15依據Von Mises等效應變破壞準則,材料為雙線性彈塑 行為之破裂韌度預測值……………………………………...... 61 圖5.16依據Von Mises等效應變破壞準則,裂縫前端曲率半徑 值開根號時材料為雙線性彈塑行為之破裂韌度預測值........ 61 圖5.17依據最大正向應力破壞準則,材料為線性彈性行為之破 裂韌度預測值……………………………………………...... 62 圖5.18依據最大正向應力破壞準則,裂縫前端曲率半徑值開根 應變破壞準則)號時材料為線性彈性行為之破裂韌度預測值…………............................................ 62 圖5.19依據最大正向應力破壞準則,材料為雙線性彈塑行為之 破裂韌度預測值………………………...................... 63 圖5.20依據最大正向應力破壞準則,裂縫前端曲率半徑值開根 號時材料為雙線性彈塑行為之破裂韌度預測值.............. 63 圖5.21依據Von Mises等效應變破壞準則、KI:KII=3:1,材料為雙線性彈塑行為之破裂韌度預測值………….................... 64 圖5.22依據Von Mises等效應變破壞準則、KI:KII=2:1,材料為線性彈塑行為之破裂韌度預測值…………...................... 64 圖5.23依據Von Mises等效應變破壞準則、KI:KII=1:1,材料為雙線性彈塑行為之破裂韌度預測值………….................... 65 圖5.24依據Von Mises等效應變破壞準則、KI:KII=1:2,材料為雙線性彈塑行為之破裂韌度預測值………….................... 65 圖5.25依據Von Mises等效應變破壞準則、KI:KII=1:3,材料為 雙線性彈塑行為之破裂韌度預測值.........................66 圖5.26樹脂玻璃之混合型破裂韌度圖…………………………… 66 圖5.27氧化鋁陶瓷之混合型破裂韌度圖………………………….67

    參考文獻
    1.D. Broek, 陳文華、張士欽 譯, “基本工程破裂力學,” 國立編譯館, 1995.

    2.D. Broek, 陳兆勛 譯, “破裂力學之實際應用,” 國立編譯館, 1999.

    3.F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” Journal of Basic Engineering, vol. 85, pp. 519–527, 1963.

    4.J. G. Williams and P. D. Ewing, “Fracture under complex stress—the angled crack problem,” International Journal of Fracture, vol. 8, pp. 441–446, 1972.

    5.D. J. Smith, M. R. Ayatollahi and M. J. Pavier, “The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading,” Fatigue Fracture Engineering Material Structure, vol. 24, pp. 137–150, 2001.

    6.T. M. Maccagno and J. F. Knott, “The fracture behavior of PMMA in mixed modes I and II,” Engineering Fracture Mechanics, vol. 34, pp. 65-86, 1989.

    7.S. R. Choi, D. Zhu and R. A. Miller, “Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures,” Engineering Fracture Mechanics, vol. 72, pp. 2144–2158, 2005.

    8.A. Pirondi and G. Nicoletto, “Mixed Mode I/II fracture toughness of bonded joints,” International Journal of Adhesion and Adhesives, vol. 22, pp. 109–117, 2002.

    9.J. B. Sha, J. Sun, Z. J. Deng and H. J. Zhou, “Micro-crack tip fracture of commercial grade aluminum under mixed mode loading,” Theoretical and Applied Fracture Mechanics, vol. 31, pp. 119-130, 1999.

    10.A. A. Griffith, “The phenomena of rupture and flow in solid,” Philosophical Transactions of the Royal Society of London, Sereis A, 221, pp. 163-198, 1920.

    11.M. L. Williams, “Stress singularities resulting from various boundary condition in angular corners of plates in extension,” Journal of the Applied Mechanics. vol. 19, pp. 526-528, 1952.

    12.G. R. Irwin, “Fracture dynamics,” Fracturing of Metals, American Society for Metals, Ohio, Cleveland, pp. 147-166, 1948.

    13.G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” Journal of the Applied Mechanics, vol. 24, pp. 361-364, 1957.

    14.J. R. Rice, “Mathematical analysis in the mechanics of fracture,” Academic Press, pp. 191-311, 1968.

    15.J. E. Shigley, 蘇金佳 譯, “機械工程設計,” 東華書局, 1995.

    16.A. C. Ugural, 尤春風、陳建廷 譯, “機械設計,” 滄海書局, 2005.

    17.徐秉業、劉信聲, “應用彈塑性力學,” 凡異出版社, 1997.

    18.W. Prager and P. G. Hodge Jr., “Theory of perfectly plastic solids,"Wiley, New York, 1951.

    19.A. Mendelson, “Plasticity:theory and application,"Macmillan, New York, 1968.

    20.R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, “Concepts and application of finite element analysis,” Wiley, New York, 2002.

    21.李輝煌, “ANSYS工程分析:基礎與觀念,"高立圖書有限公司, 2005.

    22.ANSYS theory reference. 000656. Seventh Edition. SAS IP, Inc. 1994.

    23.蔡秝凱, “正交性複合材料中裂縫前端的微觀尺度應力強度因子,”碩士論文, 國立清華大學, 2004.

    24.M. A. Sutton, X. M. Denga, F. H. Ma, J. C. Newman Jr. and M. James, “Development and application of a crack tip opening displacement-based mixed mode fracture criterion, ” International Journal of Solids and Structures. vol. 37, pp. 3591-3618, 2000.

    25.S. Suresh, C. F. Shih, A. Morrone and N. P. O’Dowd, “Mixed-mode fracture toughness of ceramic materials, ” Journal of American Ceramic Society. vol. 73, pp. 1257-1267, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE