簡易檢索 / 詳目顯示

研究生: 陸志豪
Jr-Hau Lu
論文名稱: 應用於光學讀寫頭之微靜電式致動器分析與設計
An Analysis and Design on the Micro Electrostatic Actuators Applied to Optical Pickup Head
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 105
中文關鍵詞: 靜電致動器讀寫頭致動器靜電光學電極薄膜面鏡面鏡
外文關鍵詞: Electrostatic Actuators, Pickup Head, Actuators, Electrostatic, Optical, Elctrode, Membrane Mirror, Mirror
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是設計一微靜電驅動薄膜面鏡之致動器結構,並利用微機電加工的技術作出成品,該薄膜面鏡將具有高頻寬、高靈敏度、高定位精度和體積小的特點,結合微機電積體化、低成本的製造技術,希望使光學薄膜面鏡的重量、體積乃至於成本大幅降低。將此薄膜面鏡使用於光碟機中,輔助或取代光碟機之聚焦鏡進行聚焦,提高光碟機的平均搜尋時間和資料傳輸速率,使其得以趨近硬碟機的速度,使光儲存裝置的性能獲得改善。
    本研究的範圍將著重於靜電驅動薄膜面鏡的理論驗證、電極形狀設計、下電極結構製程之改善與致動器性能分析,對於光學系統或靜電致動器之動態控制系統整合之工作暫不予深入研究,但仍希望將此工作酌量放入本研究範圍中。

    本研究將建立關於一般靜電致動器與靜電驅動薄膜面鏡之文獻資料庫,並同時使用板殼理論中之能量法與彈簧質量塊模型模擬與驗證靜電驅動薄膜面鏡之靜態與動態性能。此外,亦使用Ansoft公司出品之Maxwell電磁分析軟體分析致動器之靜電場,提出創新下電極形狀設計,以改善致動器之靜電場均勻性。在製程方面,本研究提出以表面細微加工法代替傳統體型細微加工法製作靜電驅動薄膜面鏡之下電極結構,希望改善下電極結構製程之複雜度。最終,建立靜電驅動薄膜面鏡之實驗平台與流程,量測致動器之性能,與模擬結果作比較與討論,並提出未來研究之方向。


    A micromachined electrostatically controlled deformable mirror has been applied to the fields of adaptive optics, such as focusing mirrors, rration compensation and wavefront correction. This device is usually composed of a circular membrane and an electrostatic structure bonded underneath the membrane. The former acts as a reflective mirror while the latter provides an actuating force for controlling the curvature of the membrane. This paper presents a design methodology for the development of a deformable mirror.
    The static and dynamic performance of the electrostatically driven deformable mirror depends mainly on the depth of the gap, membrane structure, and electrode distribution. By assuming the deflection function and strain energy of the membrane, the nonlinear relation between driving voltage and static deflection of the membrane can be calculated. Both lumped model and energy method are employed to find the natural frequency of the membrane. To design a novel electrode for the focusing mirrors, the Ansoft Maxwell software has been used to analyze the uniformity of electrostatic field.

    In this research, surface micromachining is used for the fabrication of the lower electrode structure. This proposed fabricating process reduces the complexity of the traditional process.

    Having measured the surface profile and mechanical properties of the membrane, the static deflection and dynamic response of the actuator are investigated. Good agreement between computer simulation and experimental results indicates the correctness of mathematical model and the proposed energy method. Finally, the feasibility and applicability of the proposed methodology are discussed.

    摘要………………………………………………………………… i 英文摘要…………………………………………………………… ii 誌謝………………………………………………………………… iii 目錄………………………………………………………………… iv 圖目錄……………………………………………………………… vii 表目錄……………………………………………………………… xi 符號表……………………………………………………………… xii 第一章 緒論……………………………………………………… 1 1.1 背景簡介與研究動機…………………………………... 1 1.2 文獻回顧………………………………………………... 2 1.3 本研究之內容…………………………………………... 8 第二章 理論分析………………………………………………… 16 2.1 應變能公式推導………………………………………... 16 2.1.1 圓形薄膜應變能…………………………………… 16 2.1.2 圓形薄板的彎矩應變能…………………………… 20 2.1.3 圓形薄膜與薄板形變方程式……………………... 22 2.2 圓形薄膜之第一模態自然頻率………………………. 25 2.2.1 能量法……………………………………………… 25 2.2.2 等效彈簧質量塊系統……………………………… 26 2.3 靜電力、靜電能、電容與電壓分析……………………. 27 第三章 電極與電壓設計………………………………………… 32 3.1 靜電致動器設計概念簡介……………………………... 32 3.1 .1 針對形變量與輸入電壓呈現非線性關係的設計.. 32 3.1.2針對驅動電壓與靜電力呈現非線性關係的改進設 計……………………………………………………. 35 3.2 針對靜電驅動聚焦面鏡之電極結構與電壓設計…… 35 3.2.1 採用偏壓與小訊號電壓混合之電壓輸入……… 36 3.2.1.a 薄膜、薄板中心形變量分析…………………… 36 3.2.1.b 薄膜、薄板之第一膜態共振頻率分析…………. 45 3.2.1.c 靜電致動器之臨界驅動電壓…………………… 46 3.2.1.d 靜電致動器動態系統……….…………………… 47 3.2.2 下電極結構設計………………………………….. 49 3.3 致動器電壓與形變量關係式模擬與參數分析……….. 50 3.3.1 靜電驅動薄膜面鏡規格…………………………… 50 3.3.2 靜電致動器性能分析……………………………… 51 3.3.3 模擬結果分析與討論……………………………… 58 3.4 靜電致動器電場分析……………………………………. 60 3.4.1 靜電場的邊界值問題……………………………… 60 3.4.2 Maxwell EM簡介………………………………….. 63 3.4.3 Maxwell EM模組分析靜電場……………………. 65 3.4.4 模擬結果與討論…………………………………… 71 第四章 製程規劃………………………………………………… 72 4.1 製程內容簡介…………………………………………... 72 4.2 致動器下電極製程………………………………….…. 73 4.2.1 致動器下電極製程………………………………… 73 4.2.2 致動器下電極製程結果……….………………….. 79 第五章 實驗設計與結果討論…………………………………… 81 5.1 實驗設備………………………………………………... 84 5.2 實驗流程………………………………………………... 87 5.2.1 靜態形變量測……………………………………… 88 5.2.2 動態形變量測……………………………………… 88 5.3 實驗結果與討論………………………………………... 91 5.3.1. JSR厚度與表面平坦度量測……………………… 91 5.3.2 實驗數據與模擬結果對照………………………… 92 第六章 結論……………………………………………………… 97 參考文獻…………………………………………………………… 100

    參考文獻
    [1] Chellabi, A. and Stepanenko,Y. S. D., 1995, “A New Control Algorithm for Bimorph Mirrors,” Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century., IEEE International Conference on Volume: 1, 1995, pp. 569-573.
    [2] Holzer, R., Shimoyama, I. and Miura, H., 1995, “Lorentz force actuation of flexible thin-film aluminum microstructure,” IEEE
    International Conference on Intelligent Robots and System, vol. 2,
    Piscataway, NJ, USA, pp. 156-161.
    [3] Divoux, C., Cugat, O. and Reyne, G., 1998, “Deformable Mirror
    using Magnetic Membranes: Application to Adaptive Optics in
    Astrophysics,” IEEE Transactions on Magnetics , vol. 34, NO. 5,
    September, pp. 3564-3567.
    [4] Burns, M. and Bright, V. M., 1998, “Micro-Electro-Mechanical
    Focusing Mirrors,” Proc. MEMS ’98, pp. 460-465.
    [5] Timoshenko, S., Donovan Harold, and Weaver, 1974, Vibration problems in engineering , Wiley.
    [6] Timoshenko, S. and Woinowsky-Krieg, 1959, Theory of plates and
    shells, McGraw-Hill.
    [7] Gol'denveizer, A. L., 1961, Theory of elastic thin shells, Published
    for the American Society of Mechanical Engineers by Pergamon.
    [8] Jeffery, Y., Lin, P., Maseeh, F. and Senturia,D. S., 1990,
    “Verification of FEM Analysis of Load-Deflection Methods
    for Measuring Mechanical Properties of the Thin Films,” Proc.
    IEEE, pp. 70-73.
    [9] Tilmans, H. A. C. and Dominicus, J., 1992, “Static and Dynamic
    Aspects of an Air-Gap Capacitor,” Sensors and Actuators A, 35,
    pp. 121-128.
    [10] Tilmans, H. A. C., Elwenspoek, M., Fluitman and Jan H. J., 1992,
    “Micro Resonant Force Gauges,” Sensors and Actuators A, 30,
    pp. 35-53.
    [11] Tilmans, H. A. C., IJntema, Dominicus J., Fluitman, Jan H. J.,
    1991, “Single Element Excitation and Detection of Micro
    Mechanical Resonators,” Solid-State Sensors and Actuators, 1991.
    Digest of Technical Papers, TRANSDUCERS’91., 1991
    International Conference on, pp. 533-537.
    [12] Tilmans, H. A. C., Legtenberg, R., 1994, “Electrostatically Driven
    Vacuum-Encapsulated Polysilicon Resonators Part II. Theory and
    Performance,” Sensors and Actuators A, 45, pp. 67-84.
    [13] Kampen, R. P. and Wolffenbuttel, R. F., 1992, “A Critically-
    Damped Intergrated Capacitive Accelerometer Using Feedback of
    Position and Velocity,” Circuits and Systems, 1992. ISCAS ’92,
    Proceeding, 1992 IEEE International Symposium on Volume 4,
    1992, pp. 2005-2008.
    [14] Kampen, R. P., Vellekoop, M. J., Sarro, P. M. and Wolffenbuttel, R.
    F., 1994, “Application of Electrostatic Feedback to Critical
    Damping of an Intergrated Silicon Capacitive Accelerometer,”
    Sensors and Actuators A, 43, pp. 100-106.
    [15] Osterberg, P., Cai, X., Yie, H., Gilbert, J., Senturia, S. and White,
    J., 1993, “A Relaxation/Multipole-Accelerated Scheme for Self-
    Consistent Electromechanical Analysis of Complex 3-D
    Microelectromechanical Structures,” Proc. Intl. Conf. Computer
    Aided Design, Santal Clara, CA, November, 1993, pp. 270-274.
    [16] Osterberg, P., Yie, H., Cai, X., White, J. and Senturia, S., 1994 ,
    “Self-Consistent Simulation and Modeling of Electrostatically
    Deformed Diaphragms,” Proc. MEMS ’94, Oiso Japan, Jan,
    pp. 28-32.
    [17] Schellin, R., Hess,G., Kuhnel, W., Thielemann, C., Trost, D. and
    Wacker, J., 1994, “ Measurements of the mechanical behavior of
    micromachined silicon and silicon-nitride membranes for
    microphones, pressure sensors and gas low meters,” Sensors and
    Actuators A, 41-42, pp. 287-292.
    [18] Popescu, D. S., Theo, S. J. L. and Elwenspoek, M., 1997, “Buckled
    Membranes for Microstructures,” The 8th International Conference
    on Solid-State Sensors and Actuators ,and Eurosensors, Stockhoim,
    Sweden, June 25-29, pp. 305-308.
    [19] Patrick B. C. and Kristofer S. J. P., 1994, “Analysis of Closed-
    loop Control of Parallel-Plate Electrostatic MicroGrippers,” IEEE,
    Int. conf. Robotics and Automation. San Diego. CA. USA. 8-13
    May, 1994, pp. 820-825.
    [20] Patrick B. C., Phyllis, R. N., Mark L. T. and Kristofer, S. J. P.,
    1996, “Dynamics of Polysilicon Parallel-Plate Electrostatic
    Actuators,” Sensors and Actuators A, 52, pp. 216-220.
    [21] Veijola, T., Kuisma, H., Lahdenperä, J. and Ryhänen, T., 1995,
    “Equivalent-Circuit Model of the Squeezed Gas Film in a Silicon
    Accelerometer,” Sensors and Actuators A, 48, pp. 239-248.
    [22] Dieter, M. S., Maibach, J. and Obermeier, E., 1995, “ A New
    Analytical Solution for the Load-Deflection of Square
    Membranes,” Journal of Microelectromechanical System, vol. 4.
    no. 4, December, pp. 238-241.
    [23] Legtenberg, R., Gilbert, J., Stephen D. S. and Elwenspoek, M.,
    1997, “Electrostatic Curved Electrode Actuators,” Journal of
    Microelectromechanical System, vol. 6, no. 3, September, pp. 257-
    265.
    [24] Legtenberg, R., Gilbert, J., Stephen D. S., Elwenspoek, M. and
    Fluitman, J., 1995, “Electrostatic Curved Electrode Actuators,”
    Proc. MEMS ’95, pp. 37-42.
    [25] Gupta, R. K. and Stephen, D. S., 1997, “Pull-in Time Dynamics as
    A Measure of Absolute Pressure,” Proc. MEMS ’97, pp.290-294.
    [26] Wanger, B., Quenzer, H. J. Hoerschelmann, Lisec, T. and Juerss,
    M. 1996, “Bistable Microvalve with Pneumatically Coupled
    Membranes,” Proc. MEMS ’96, pp. 384-388.
    [27] Pavlovic, M. N. and Mbakogu, F. C., 1996, “Raylegih Estimates of
    the Fundamental Frequencies of Vibration of Circular Plates,”
    Journal of Sound and Vibration , pp. 389-394.
    [28] Shikida, M., Sato,K., Takeshita, K. and Suzuki, S., 1996,
    “Response Time Measurement of Electrostatic S-Shaped Film
    Actuator Related to Environmental Gas Pressure Conditions,”
    Proc. MEMS’96, pp. 210-215.
    [29] Fedder, G. K. and Roger, T. H., 1996, “Multimode Digital Control
    of a Suspended Polysilicon Microstructure,” Journal of
    Microelectromechanical Systems, vol. 5, no. 4, December, pp. 283-
    297.
    [30] Fischer, M., Giousouf, M., Schaepperle, J., Eichner, D., Weinmann,
    M. and Münch, W., 1997, “Electrostatically Deflectable Polysilicon
    Micromirrors Dynamic Behaviour and Comparison with the
    Results from FEM Modelling with ANSYS,” The 11th European
    Conference on Solid-State Transducers Warsaw, Poland,
    September, 21-24. pp. 43-46.
    [31] Osterbroek, R. E., Lammerink, T.S.J., Berenschot, J.W. and
    Elwenspoek, M.C., 1997, “Designing, Realization and
    Characterization of a Novel Capacitive Pressure/Flow Sensor,”
    1997 International Conference on Solid-State Sensors and
    Actuators Chicago, June, pp. 151-154.
    [32] Seeger, Joseph I., Selden B. and Crary, 1997, “Stabilization of
    Electrostatically Actuated Mechanical Devices,” 1997
    International Conference on Solid-State Sensors and Actuators
    Chicago, June 16-19, pp. 1133-1136.
    [33] 謝哲偉, 1998, “靜電驅動微扭轉致動器之研究,” 國立清華大 學動力機械系碩士論文.
    [34] 劉鎮煌, 1998, “微扭轉致動器之靜電驅動力分析,” 國立清華 大學動力機械系碩士論文.
    [35] Schomburg, W. K. and Goll C., 1998, “Design optimization of
    bistable microdiaphragm valves,” Sensors and Actuators A, 64,
    pp. 259-264.
    [36] Hirai, Y., Shido, M. and Tanaka, Y., 1998, “Study of Large
    Bending and Low Voltage Drive Electrostatic Actuator with Novel
    Shaped Cantilever and Electrode,” Micromechatronics and Human
    Science, 1998. MHS ’98. Proceedings of the 1998 International
    Symposium on, 1998, pp. 161-164.
    [37] Grosso, R. P. and Yellin, M., 1977, “The Membrane Mirror as an
    Adaptive Optical Element,” Journal of Optical Society of America,
    vol. 67, no. 3, pp. 393-399.
    [38] Pearson, J. E. and Hansen, S., 1977, “Experimental Studies of a
    Deformable –Mirror Adaptive Optical System,” Journal of Optical
    Society of America, vol. 67, no. 3, March, pp. 325-333.
    [39] Hornbeck, L. J., 1983, “128x128 Deformable Mirror Device,”
    IEEE Trans. Electron Device, vol. ED-30, pp. 539-545.
    [40] Claflin, E. S., and Bareket, N., 1986, “Configuring an Electrostatic
    Membrane Mirror by Least-Squares Fitting with Analytically
    Derived Influence Functions,” Journal of Optical Society of
    America, vol. 3, no. 11, November, pp. 1833-1839.
    [41] Vdovin, G. and Middelhoek, S., 1995, “Deformable Mirror
    Display with Continuous Reflecting Surface Micromachined in
    Silicon,” Proc. MEMS ’95, pp. 61-65.
    [42] Vdovin, G. and Sarro, P. M., 1995, “Flexible Mirror Micromachined in Silicon,” Applied Optics , vol. 34, no. 16, June, pp. 2968-2972.
    [43] Vdovin, G., Sarro, P. M. and Middelhoek, S., 1998, “Technology
    and Applications of Micromachined Membrane Deformable
    Mirrors,” Broadband Optical Networks and Technologies: An
    Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics and
    Optoelectronics. 1998 IEEE/LEOS Summer Topical Meetings,
    1998, pp. 97-98.
    [44] Wang, P. K. C. and Hadaegh, F.Y., 1993, “Modal Noninteracting
    Controls for Deformable Mirrors,” The Second IEEE Conference
    on Control Applications, September 13-16, pp. 121-128 .
    [45] Wang, P. K. C., 1996, “A Method for Designing Electrostatic-
    Actuator Electorde Pattern in Micromachined Deformable
    Mirrors,” Sensors and Actuators A, pp. 211-217.
    [46] Wang, P. K. C., 1996, “Computation of Static Shapes and Voltages
    for Micromachined Deformable Mirrors with Nonlinear
    Electrostatic Actuators,” Journal of Microelectromechanical
    Systems, vol. 5, no. 3, September, pp. 205-220.
    [47] Hisanaga, M., Koumura, T. and Hattori, T., 1993, “Fabrication 3-
    Dimensionally Shaped Si Diaphragm Dynamic Focusing Mirror,”
    Proc. MEMS ’93, pp. 30-35.
    [48] Fujita, H. and Ikoma, T., 1990, “Numerical Determination of the
    Electromechanical Field for a Micro Servosystem,” Sensors and
    Actuators A, 21-23, pp. 215-218.
    [49] Fujita, H., Harada, M. and Sato, K., 1988, “ Micro Servocontrol of Silicon Diaphragms Driven by Electrostatic Force,” Industrial Electronics Society, 1998. IECON’88. Proceedings, 14 Volume 2, pp. 489- 494.
    [50] Fujita, H., Harada, M. and Sato, K., 1988, “An Intergrated Micro
    Servosystem,” Intelligent Robots, 1998., IEEE International
    Workshop, pp. 15-20.
    [51] Fujita, H.and Toshiyoshi, 1996, “Electrostatic micro torsion
    mirrors for an optical switch matrix,” Journal of
    Microelectromechanical System, vol. 5, pp. 231-237.
    [52] Kolmanovsky, I., Robert, H. and Miller, P. D., Washabaugh, Elmer,
    Gilbert, G., 1998, “Nonlinear Control of Electrostatically Shaped
    Membrane with State and Control Constraints,” Proceedings of the
    American Control Conference Philadelphia, Pennsylvania, June.
    pp. 2927-2931.
    [53] 李其旻, 1999, “微細可變聚焦鏡面結構之設計與製作,” 國立清
    華大學動力機械系碩士論文
    [54] Ugural, A. C., 1981, “Stresses in plates and shells,” McGraw-Hill.
    [55] Chang, D. K.,1989, Field and Wave Electromagnetics 2/e.
    [56] Vdovin, G., 1997, “Quick Focusing of imaging optics using
    micromachined adaptive mirrors,” Optics communications, 140,
    August. pp. 187-190.
    [57] Vdovin, G., Sarro, P. M. and Middelhoek, S., 1995, “Technology,
    Characterization and Applications of Adaptive mirrors Fabricated
    with IC-compatible Micromachining, ” Proc. SPIE 2534. Adaptive
    optical systems and applications, pp. 116-129.
    [58] 李英堯, 2000, “應用於光學讀寫頭之靜電式薄膜反射鏡分析與
    設計,’’ 國立清華大學動力機械系碩士論文.
    [59] Using Manual of Advanced Vibrometer / Interferometer Device,
    AHEAD Optoelectronics, Inc., 1998.
    [60] 黃戴廷, 1999, ‘‘創新光學讀寫頭致動器設計,’’ 國立清華大學 動力機械系碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE