簡易檢索 / 詳目顯示

研究生: 胡宜忱
I-Chen Hu
論文名稱: 異藻藍蛋白之生合成途徑探討
Study on the Biosynthesis Pathway of Allophycocyanin
指導教授: 呂平江
Ping-Chiang Lyu
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 118
中文關鍵詞: 藻膽色素蛋白異藻藍蛋白發光團發光團裂解酶
外文關鍵詞: Phycobiliproteins, Allophycocyanin, Chromophore, Chromophore lyase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藻膽色素蛋白(Phycobiliproteins)具有共價鍵結的發光團(chromophore),因此在可見光區有特殊的吸光(absorption)及放射(emission)特性。異藻藍蛋白(allophycocyanin (APC))、C-藻藍蛋白(C-phycocyanin (CPC))以及藻紅藍蛋白(phycoerythrocyanin (PEC))是藍綠菌(cyanobacteria)中最常見的三種藻膽色素蛋白,三者都帶有發光團藻藍色素(phycocyanobilin (PCB))。過往的文獻顯示在發光團裂解酶(chromophore lyases)的催化下,PCB 才能專一並正確地與CPC或PEC形成鍵結。這些發光團裂解酶也被報導互相間具有高度的序列相似性(sequence homology)。然而APC專屬的發光團裂解酶尚未被報導過。
    鍵結著PCB的APC □ 次單位(chromo-ApcA)可經由自發性的PCB附加反應(spontaneous PCB attachment)而產生,不需要其他酵素的催化。自發性PCB附加反應產生Chromo-ApcA的速度,也與其他藻膽色素蛋白經過發光團裂解酶催化生成的速率相近。這些結果表明:ApcA具有自行催化與PCB鍵結的發光團裂解酶能力。
    Cys81被鑑定是與PCB 結合的胺基酸殘基,因此它的突變體無法生產Chromo-ApcA。除了Cys81之外,利用定點突變置換Arg83、Asp84、Tyr87和Tyr88都會造成Chromo-ApcA的產率大幅降低以及光譜特性變化。和CPC □ 亞單體比較後,我們推斷Arg83 、Asp84 、Tyr87 和Tyr88 的重要性為安置PCB在正確位置,以利後續的PCB鍵結反應發生。
    鍵結著PCB的APC □ 亞單體(chromo-ApcB)可經由試管內(in vitro)PCB附加反應獲得,或在大腸桿菌內利用雙質體表現系統直接生產。APC □ 亞單體具有兩個色胺酸(Cys81及 Cys157),但是PCB附加反應會選擇性地只與Cys81產生共價鍵結。因此我們推測ApcB,與ApcA相似,都有自行催化與PCB鍵結的發光團裂解酶能力。


    Phycobiliproteins are valuable as fluorescent probes, because they are covalently attached with chromophores, giving them distinct absorption and emission spectra in the visible range. Allophycocyanin (APC), C-phycocyanin (CPC), and phycoerythrocyanin (PEC) are the three most common phycobiliproteins in cyanobacteria, and each contains the chromophore, phycocyanobilin (PCB). Chromophore lyases are needed to catalyze the attachment of chromophore to CPC and PEC. However, no APC-specific chromophore lyase has been reported.
    PCB bonded APC α subunit (chromo-ApcA) was obtained via a spontaneous PCB attachment reaction. The extent of PCB attachment to apo-ApcA was comparable to that of the lyase-catalyzed reactions for other phycobiliproteins. The absorption and fluorescence characteristics of chromo-ApcA were similar to that of the native APC α subunit. These results indicate that ApcA has autocatalytic lyase activity.
    Cys81 is the PCB bonded residue in ApcA, and its mutant failed to produce chromophorylated ApcA. In addition to Cys81, alanine substitution of Arg83, Asp84, Tyr87, and Tyr88 decreased the yield of chromoprotein and changed their spectral characteristics. Compared with CpcA, we inferred that Arg83, Asp84, Tyr87 and Tyr88 might be important for positioning the PCB in the correct orientation during bilin attachment.
    Chromo-ApcB was obtained by either in vitro PCB assembly or direct production in E. coli. This spontaneous chromophorylation was region-specific to Cys81, and a covalent bond was formed. We proposed that recombinant ApcB, similar to ApcA, has the autocatalytic bilin:biliprotein activity.

    Contents Abstract (in Chinese) -------------------------------------------------------------------------- 1 Abstract (in English) --------------------------------------------------------------------------- 2 Abbreviation and Key words ------------------------------------------------------------------ 3 Chapter 1 Literature Review ----------------------------------------------------------------- 4 1.1 General Introduction ---------------------------------------------------------------- 4 1.1.1 Phycobilisomes and phycobiliproteins ------------------------------------ 4 1.1.2 Spectral property of phycobiliproteins ------------------------------------ 5 1.1.3 Structural analysis of phycobiliproteins ---------------------------------- 6 1.1.4 Biosynthesis of phycobiliproteins ------------------------------------------ 8 1.2 Figures ------------------------------------------------------------------------------- 11 Chapter 2 Materials and Methods --------------------------------------------------------- 17 2.1 Materials ----------------------------------------------------------------------------- 17 2.2 Recombination and heterologous expression of cyanobacterial proteins --- 18 2.2.1 Isolation of genomic DNA from cyanobacteria ------------------------- 18 2.2.2 Construction of plasmids -------------------------------------------------- 19 2.2.3 Building the ApcA structure model and selecting residues for mutagenesis ------------------------------------------------------------ 20 2.2.4 Construction of ApcA mutants -------------------------------------------- 21 2.2.5 Overexpression and purification of proteins ---------------------------- 22 2.2.6 Production and Purification of PCB ------------------------------------- 23 2.3 PCB assembly to apo-proteins ---------------------------------------------------- 24 2.3.1 Preparation of chromo-ApcA --------------------------------------------- 24 2.3.2 In vitro bilin attachment assay -------------------------------------------- 25 2.3.3 PCB attachment to wild-type and mutant ApcA ------------------------ 25 2.3.4 Direct Production of Chromophotylated Proteins in E. coli ---------- 25 2.4 Electrophoresis and Zn2+-UV fluorography ------------------------------------- 26 2.5 Spectral analysis -------------------------------------------------------------------- 27 2.6 Kinetic Study ------------------------------------------------------------------------ 28 2.7 Fluorescence microscopy ---------------------------------------------------------- 29 2.8 Tables and Figures ----------------------------------------------------------------- 30 Chapter 3 Identification of the autocatalytic bilin:biliprotein lyase ability of allophycocyanin alpha-subunit ----------------------------------------------- 36 3.1 Introduction ------------------------------------------------------------------------- 36 3.2 Results -------------------------------------------------------------------------------- 38 3.2.1 Protein expression ---------------------------------------------------------- 38 3.2.2 Reconstitution of chromophorylated ApcA ------------------------------ 38 3.2.3 In vitro bilin attachment assay -------------------------------------------- 40 3.2.4 Spectral properties of chromo-ApcA ------------------------------------- 41 3.2.5 Identification of the PCB attached residue ----------------------------- 42 3.2.6 Selecting the target residues for site-directed mutagenesis ----------- 43 3.2.7 PCB attachment to ApcA mutants ---------------------------------------- 44 3.3 Discussion --------------------------------------------------------------------------- 48 3.4 Summary ----------------------------------------------------------------------------- 57 3.5 Tables and Figures ----------------------------------------------------------------- 58 Chapter 4 Biosynthesis of fluorescent allophycocyanin beta-subunit by autocatalytic bilin attachment ------------------------------------------------- 80 4.1 Introduction ------------------------------------------------------------------------- 80 4.2 Results -------------------------------------------------------------------------------- 82 4.2.1 Reconstitution of PCB adduct of ApcB ---------------------------------- 82 4.2.2 Identification of the PCB attached residue ----------------------------- 83 4.2.3 In vitro bilin attachment assay ----------------------------- 84 4.2.4 Direct Production of Chromo-ApcB in E. coli -------------------------- 85 4.4.5 Reconstitution of APC □□ protomer ------------------------------------- 85 4.3 Discussion --------------------------------------------------------------------------- 87 4.4 Summary ----------------------------------------------------------------------------- 89 4.5 Tables and Figures ----------------------------------------------------------------- 90 Conclusion ----------------------------------------------------------------------------------- 103 References ------------------------------------------------------------------------------------ 104

    (1) Yamanaka, G., Glazer, A. N., and Williams, R. C. (1980) Molecular architecture of a light-harvesting antenna. Comparison of wild type and mutant Synechococcus 6301 phycobilisomes. J Biol Chem 255, 11104-10.
    (2) Glazer, A. N. (1983) Comparative biochemistry of photosynthetic light-harvesting systems. Annu Rev Biochem 52, 125-57.
    (3) Grossman, A. R., Schaefer, M. R., Chiang, G. G., and Collier, J. L. (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57, 725-49.
    (4) Ducret, A., Sidler, W., Wehrli, E., Frank, G., and Zuber, H. (1996) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur J Biochem 236, 1010-24.
    (5) MacColl, R. (1998) Cyanobacterial phycobilisomes. J Struct Biol 124, 311-34.
    (6) Samsonoff, W. A., and MacColl, R. (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch Microbiol 176, 400-5.
    (7) Gantt, E., and Conti, S. F. (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26, 365-81.
    (8) Gantt, E., and Conti, S. F. (1966) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29, 423-34.
    (9) Gantt, E., and Conti, S. F. (1966) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19, 393-405.
    (10) Gray, B. H., Lipschultz, C. A., and Gantt, E. (1973) Phycobilisomes from a blue-green alga Nostoc species. J Bacteriol 116, 471-8.
    (11) Gantt, E., Lipschultz, C. A., and Zilinskas, B. A. (1976) Phycobilisomes in relation to the thylakoid membranes. Brookhaven Symp Biol, 347-57.
    (12) Gantt, E., and Lipschultz, C. A. (1973) Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta 292, 858-61.
    (13) Gantt, E., Lipschultz, C. A., and Zilinskas, B. (1976) Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta 430, 375-88.
    (14) Khanna, R., Graham, J. R., Myers, J., and Gantt, E. (1983) Phycobilisome composition and possible relationship to reaction centers. Arch Biochem Biophys 224, 534-42.
    (15) Chereskin, B. M., Clement-Metral, J. D., and Gantt, E. (1985) Characterization of a purified photosystem II-phycobilisome particle preparation from Porphyridium cruentum. Plant Physiol 77, 626-629.
    (16) Lundell, D. J., Williams, R. C., and Glazer, A. N. (1981) Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J Biol Chem 256, 3580-92.
    (17) Yu, M. H., Glazer, A. N., and Williams, R. C. (1981) Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomes. J Biol Chem 256, 13130-6.
    (18) Gingrich, J. C., Williams, R. C., and Glazer, A. N. (1982) Rod substructure in cyanobacterial phycobilisomes: phycoerythrin assembly in Synechocystis 6701 phycobilisomes. J Cell Biol 95, 170-8.
    (19) Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) Molecular architecture of a light-harvesting antenna. Isolation and characterization of phycobilisome subassembly particles. J Biol Chem 257, 4077-86.
    (20) Yu, M. H., and Glazer, A. N. (1982) Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem 257, 3429-33.
    (21) Gingrich, J. C., Lundell, D. J., and Glazer, A. N. (1983) Core substructure in cyanobacterial phycobilisomes. J Cell Biochem 22, 1-14.
    (22) Capuano, V., Braux, A. S., Tandeau de Marsac, N., and Houmard, J. (1991) The "anchor polypeptide" of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J Biol Chem 266, 7239-47.
    (23) Grossman, A. R., Schaefer, M. R., Chiang, G. G., and Collier, J. L. (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725-49.
    (24) Glazer, A. N. (1994) Phycobiliproteins - a family of valuable, widely used fluorophores. J. Appl. Phycol. 6, 105-112.
    (25) Adir, N., and Lerner, N. (2003) The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomes. J Biol Chem 278, 25926-32.
    (26) Lundell, D. J., Yamanaka, G., and Glazer, A. N. (1981) A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisomes--a new biliprotein. J Cell Biol 91, 315-9.
    (27) Ried, A., Hessenberg, B., Metzler, H., and Ziegler, R. (1977) Distribution of excitation energy among photosystem I and photosystem II in red algae. I. Action spectra of light reactions I and II. Biochim Biophys Acta 459, 175-86.
    (28) Glazer, A. N. (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14, 47-77.
    (29) Hu, Q., Marquardt, J., Iwasaki, I., Miyashita, H., Kurano, N., Morschel, E., and Miyachi, S. (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412, 250-61.
    (30) McConnell, M. D., Koop, R., Vasil'ev, S., and Bruce, D. (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130, 1201-12.
    (31) Nelson, N., and Yocum, C. F. (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57, 521-65.
    (32) Gingrich, J. C., Blaha, L. K., and Glazer, A. N. (1982) Rod substructure in cyanobacterial phycobilisomes: analysis of Synechocystis 6701 mutants low in phycoerythrin. J Cell Biol 92, 261-8.
    (33) Rusckowski, M., and Zilinskas, B. A. (1982) Allophycocyanin I and the 95 Kilodalton Polypeptide : The Bridge between Phycobilisomes and Membranes. Plant Physiol 70, 1055-1059.
    (34) Glazer, A. N., Lundell, D. J., Yamanaka, G., and Williams, R. C. (1983) The structure of a "simple" phycobilisome. Ann Microbiol (Paris) 134B, 159-80.
    (35) Fuglistaller, P., Suter, F., and Zuber, H. (1986) Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus. II. Amino- acid sequences and functions. Biol Chem Hoppe Seyler 367, 615-26.
    (36) Fuglistaller, P., Suter, F., and Zuber, H. (1986) Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus. I. Isolation and characterization of phycobiliprotein-linker-polypeptide complexes. Biol Chem Hoppe Seyler 367, 601-14.
    (37) Bishop, J. E., Lagarias, J. C., Nagy, J. O., Schoenleber, R. W., Rapoport, H., Klotz, A. V., and Glazer, A. N. (1986) Phycobiliprotein-bilin linkage diversity. I. Structural studies on A- and D-ring-linked phycocyanobilins. J Biol Chem 261, 6790-6.
    (38) Rhie, G., and Beale, S. I. (1992) Biosynthesis of phycobilins. Ferredoxin- supported nadph-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J Biol Chem 267, 16088-93.
    (39) Beale, S. I. (1994) Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria. Ciba Found Symp 180, 156-68; discussion 168-71.
    (40) Rhie, G., and Beale, S. I. (1995) Phycobilin biosynthesis: reductant requirements and product identification for heme oxygenase from Cyanidium caldarium. Arch Biochem Biophys 320, 182-94.
    (41) Szalontai, B., Gombos, Z., Csizmadia, V., Bagyinka, C., and Lutz, M. (1994) Structure and interactions of phycocyanobilin chromophores in phycocyanin and allophycocyanin from an analysis of their resonance raman spectra. Biochemistry 33, 11823-32.
    (42) MacColl, R. (1998) Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311-34.
    (43) Oi, V. T., Glazer, A. N., and Stryer, L. (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93, 981-6.
    (44) Glazer, A. N., and Stryer, L. (1983) Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J 43, 383-6.
    (45) Kronick, M. N., and Grossman, P. D. (1983) Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin Chem 29, 1582-6.
    (46) White, J. C., and Stryer, L. (1987) Photostability studies of phycobiliprotein fluorescent labels. Anal Biochem 161, 442-52.
    (47) Fuchs, H. J., McDowell, J., and Shellito, J. E. (1988) Use of allophycocyanin allows quantitative description by flow cytometry of alveolar macrophage surface antigens present in low numbers of cells. Am Rev Respir Dis 138, 1124-8.
    (48) Lansdorp, P. M., Smith, C., Safford, M., Terstappen, L. W., and Thomas, T. E. (1991) Single laser three color immunofluorescence staining procedures based on energy transfer between phycoerythrin and cyanine 5. Cytometry 12, 723-30.
    (49) Sohn, G., and Sautter, C. (1991) R-phycoerythrin as a fluorescent label for immunolocalization of bound atrazine residues. J Histochem Cytochem 39, 921-6.
    (50) Doucet, M., Soussi, N., Crain-Denoyelle, A. M., Gendron, M. C., and Sanchez, P. (2001) R-phycoerythrin-cyanine 5 tandem discerns CD72 polymorphism. Immunogenetics 53, 307-14.
    (51) Telford, W. G., Moss, M. W., Morseman, J. P., and Allnutt, F. C. (2001) Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254, 13-30.
    (52) Telford, W. G., Moss, M. W., Morseman, J. P., and Allnutt, F. C. (2001) Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44, 16-23.
    (53) Trinquet, E., Maurin, F., Preaudat, M., and Mathis, G. (2001) Allophycocyanin 1 as a near-infrared fluorescent tracer: isolation, characterization, chemical modification, and use in a homogeneous fluorescence resonance energy transfer system. Anal Biochem 296, 232-44.
    (54) Waggoner, A. (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10, 62-6.
    (55) Matamala, A. R., Almonacid, D. E., Figueroa, M. F., Martinez-Oyanedel, J., and Bunster, M. C. (2007) A semiempirical approach to the intra-phycocyanin and inter-phycocyanin fluorescence resonance energy-transfer pathways in phycobilisomes. J Comput Chem 28, 1200-7.
    (56) Brejc, K., Ficner, R., Huber, R., and Steinbacher, S. (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J Mol Biol 249, 424-40.
    (57) MacColl, R., Eisele, L. E., and Menikh, A. (2003) Allophycocyanin: trimers, monomers, subunits, and homodimers. Biopolymers 72, 352-65.
    (58) Duerring, M., Schmidt, G. B., and Huber, R. (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J Mol Biol 217, 577-92.
    (59) Wang, X. Q., Li, L. N., Chang, W. R., Zhang, J. P., Gui, L. L., Guo, B. J., and Liang, D. C. (2001) Structure of C-phycocyanin from Spirulina platensis at 2.2 Å resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallogr D Biol Crystallogr 57, 784-92.
    (60) Adir, N., Dobrovetsky, Y., and Lerner, N. (2001) Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313, 71-81.
    (61) Adir, N., Vainer, R., and Lerner, N. (2002) Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim Biophys Acta 1556, 168-74.
    (62) Nield, J., Rizkallah, P. J., Barber, J., and Chayen, N. E. (2003) The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J Struct Biol 141, 149-55.
    (63) Chang, W. R., Jiang, T., Wan, Z. L., Zhang, J. P., Yang, Z. X., and Liang, D. C. (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Å resolution. J Mol Biol 262, 721-31.
    (64) Ritter, S., Hiller, R. G., Wrench, P. M., Welte, W., and Diederichs, K. (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-Å resolution. J Struct Biol 126, 86-97.
    (65) Martinez-Oyanedel, J., Contreras-Martel, C., Bruna, C., and Bunster, M. (2004) Structural-functional analysis of the oligomeric protein R-phycoerythrin. Biol Res 37, 733-45.
    (66) MacColl, R. (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657, 73-81.
    (67) MacColl, R., Csatorday, K., Berns, D. S., and Traeger, E. (1980) Chromophore interactions in allophycocyanin. Biochemistry 19, 2817-20.
    (68) Padyana, A. K., Bhat, V. B., Madyastha, K. M., Rajashankar, K. R., and Ramakumar, S. (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282, 893-8.
    (69) Contreras-Martel, C., Martinez-Oyanedel, J., Bunster, M., Legrand, P., Piras, C., Vernede, X., and Fontecilla-Camps, J. C. (2001) Crystallization and 2.2 Å resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning. Acta Crystallogr D Biol Crystallogr 57, 52-60.
    (70) Cornejo, J., Willows, R. D., and Beale, S. I. (1998) Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J 15, 99-107.
    (71) Frankenberg, N., Mukougawa, K., Kohchi, T., and Lagarias, J. C. (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13, 965-78.
    (72) Beale, S. I., and Cornejo, J. (1991) Biosynthesis of phycobilins. 15,16-Dihydrobiliverdin IX alpha is a partially reduced intermediate in the formation of phycobilins from biliverdin IX alpha. J Biol Chem 266, 22341-5.
    (73) Beale, S. I., and Cornejo, J. (1991) Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha. J Biol Chem 266, 22333-40.
    (74) Beale, S. I., and Cornejo, J. (1991) Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J Biol Chem 266, 22328-32.
    (75) Kohchi, T., Mukougawa, K., Frankenberg, N., Masuda, M., Yokota, A., and Lagarias, J. C. (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13, 425-36.
    (76) Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J. Biol. Chem. 263, 18343-9.
    (77) Arciero, D. M., Dallas, J. L., and Glazer, A. N. (1988) In vitro attachment of bilins to apophycocyanin. II. Determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct. J. Biol. Chem. 263, 18350-7.
    (78) Arciero, D. M., Dallas, J. L., and Glazer, A. N. (1988) In vitro attachment of bilins to apophycocyanin. III. Properties of the phycoerythrobilin adduct. J. Biol. Chem. 263, 18358-63.
    (79) Tooley, A. J., Cai, Y. A., and Glazer, A. N. (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc. Natl. Acad. Sci. U.S.A. 98, 10560-5.
    (80) Tooley, A. J., and Glazer, A. N. (2002) Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunit in a heterologous host. J. Bacteriol. 184, 4666-71.
    (81) Fairchild, C. D., Zhao, J., Zhou, J., Colson, S. E., Bryant, D. A., and Glazer, A. N. (1992) Phycocyanin alpha-subunit phycocyanobilin lyase. Proc. Natl. Acad. Sci. U.S.A. 89, 7017-21.
    (82) Fairchild, C. D., and Glazer, A. N. (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase. J. Biol. Chem. 269, 8686-94.
    (83) Jung, L. J., Chan, C. F., and Glazer, A. N. (1995) Candidate genes for the phycoerythrocyanin alpha subunit lyase. Biochemical analysis of pecE and pecF interposon mutants. J. Biol. Chem. 270, 12877-84.
    (84) Zhao, K. H., Deng, M. G., Zheng, M., Zhou, M., Parbel, A., Storf, M., Meyer, M., Strohmann, B., and Scheer, H. (2000) Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett. 469, 9-13.
    (85) Zhao, K. H., Wu, D., Wang, L., Zhou, M., Storf, M., Bubenzer, C., Strohmann, B., and Scheer, H. (2002) Characterization of phycoviolobilin phycoerythrocyanin-alpha 84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. Eur. J. Biochem. 269, 4542-50.
    (86) Zhao, K. H., Zhu, J. P., Deng, M. G., Zhou, M., Storf, M., Parbel, A., and Scheer, H. (2003) Photochromic chromopeptides derived from phycoerythrocyanin: biophysical and biochemical characterization. Photochem. Photobiol. Sci. 2, 741-8.
    (87) Storf, M., Parbel, A., Meyer, M., Strohmann, B., Scheer, H., Deng, M. G., Zheng, M., Zhou, M., and Zhao, K. H. (2001) Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry 40, 12444-56.
    (88) Shen, G., Saunee, N. A., Williams, S. R., Gallo, E. F., Schluchter, W. M., and Bryant, D. A. (2006) Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem.
    (89) Zhao, K. H., Su, P., Li, J., Tu, J. M., Zhou, M., Bubenzer, C., and Scheer, H. (2006) Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120. J Biol Chem 281, 8573-81.
    (90) Yeh, K. C., Wu, S. H., Murphy, J. T., and Lagarias, J. C. (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277, 1505-8.
    (91) Jiang, Z., Swem, L. R., Rushing, B. G., Devanathan, S., Tollin, G., and Bauer, C. E. (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285, 406-9.
    (92) Vierstra, R. D., and Davis, S. J. (2000) Bacteriophytochromes: new tools for understanding phytochrome signal transduction. Semin. Cell. Dev. Biol. 11, 511-21.
    (93) Lamparter, T. (2004) Evolution of cyanobacterial and plant phytochromes. FEBS Lett. 573, 1-5.
    (94) Reuter, W., Westermann, M., Brass, S., Ernst, A., Boger, P., and Wehrmeyer, W. (1994) Structure, composition, and assembly of paracrystalline phycobiliproteins in Synechocystis sp. strain BO 8402 and of phycobilisomes in the derivative strain BO 9201. J. Bacteriol. 176, 896-904.
    (95) Glauser, M., Bryant, D. A., Frank, G., Wehrli, E., Rusconi, S. S., Sidler, W., and Zuber, H. (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur. J. Biochem. 205, 907-15.
    (96) Jorissen, H. J., Quest, B., Lindner, I., Tandeau de Marsac, N., and Gartner, W. (2002) Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization. Photochem. Photobiol. 75, 554-9.
    (97) Landgraf, F. T., Forreiter, C., Hurtado Pico, A., Lamparter, T., and Hughes, J. (2001) Recombinant holophytochrome in Escherichia coli. FEBS Lett. 508, 459-62.
    (98) Gambetta, G. A., and Lagarias, J. C. (2001) Genetic engineering of phytochrome biosynthesis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 98, 10566-71.
    (99) Zhao, K. H., Su, P., Bohm, S., Song, B., Zhou, M., Bubenzer, C., and Scheer, H. (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim. Biophys. Acta. 1706, 81-7.
    (100) Wu, X., Zarka, A., and Boussiba, S. (2000) A simple protocol for preparing DNA from filamentous cyanobacteria. Plant Mol. Biol. Rep. 18, 385-392.
    (101) Cornejo, J., Willows, R. D., and Beale, S. I. (1998) Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J. 15, 99-107.
    (102) Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291-325.
    (103) Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779-815.
    (104) Shen, M. Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15, 2507-24.
    (105) Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-34.
    (106) Lamparter, T., Esteban, B., and Hughes, J. (2001) Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure. Eur. J. Biochem. 268, 4720-30.
    (107) Berkelman, T. R., and Lagarias, J. C. (1986) Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal. Biochem. 156, 194-201.
    (108) Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., and Tabata, S. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res. 3, 185-209.
    (109) Kaneko, T., Nakamura, Y., Wolk, C. P., Kuritz, T., Sasamoto, S., Watanabe, A., Iriguchi, M., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kohara, M., Matsumoto, M., Matsuno, A., Muraki, A., Nakazaki, N., Shimpo, S., Sugimoto, M., Takazawa, M., Yamada, M., Yasuda, M., and Tabata, S. (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8, 205-13; 227-53.
    (110) Zhao, K. H., Zhu, J. P., Song, B., Zhou, M., Storf, M., Bohm, S., Bubenzer, C., and Scheer, H. (2004) Nonenzymatic chromophore attachment in biliproteins: conformational control by the detergent Triton X-100. Biochim. Biophys. Acta. 1657, 131-45.
    (111) Hu, I. C., Lee, T. R., Lin, H. F., Chiueh, C. C., and Lyu, P. C. (2006) Biosynthesis of fluorescent allophycocyanin alpha-Ssubunits by autocatalytic bilin attachment. Biochemistry 45, 7092-9.
    (112) Gysi, J. R., and Zuber, H. (1979) Properties of allophycocyanin II and its alpha- and beta-subunits from the thermophilic blue--green alga Mastigocladus laminosus. Biochem J 181, 577-83.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE