研究生: |
童璽文 Hsi-Wen Tung |
---|---|
論文名稱: |
熱致動式固態可調焦微透鏡 Thermal Actuated Solid Tunable Focal Length Microlens |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 可調焦透鏡 、PDMS |
外文關鍵詞: | Tunable focal length microlens, PDMS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微光機電研究領域中,微型透鏡的製作已成為一門技術,並被廣泛的應用在影像成形、光通訊、和生醫微流道檢測等方面。近幾年來,開始有越來越多的人投入可調焦式微透鏡的研發與製作。可調焦式微透鏡的使用降低了光學平台自由度的需要,進而簡化系統設計及減少體積。可調焦式微透鏡的應用範圍很廣,凡舉觀察物的位置無法固定在同一位置上時,例如照相時的對焦,或欲對生醫晶片微流道上某個距離的檢體作觀察,可調焦式微透鏡都有它獨特的優點。
本研究提出一種新式固態可調焦微透鏡。結合熱致動器之設計概念,並配合適當的彈性材料PDMS作微透鏡,以普及的矽基材製程加工及點膠方式製作本研究之固態可調焦微透鏡。研究中先以有限元素分析軟體模擬不同元件設計參數,得到固態可調焦透鏡設計最佳化之趨勢。透過實際元件製作,以及量測透鏡操作特性,除驗證本研究之概念設計具有可行性之外,亦了解固態調焦透鏡之性能,並針對其弱項嘗試加以改進。目前製作出之固態透鏡,預期其焦距可從2851微米變化至1712微米;透鏡調焦之反應時間改善後約1.6秒。
本研究所提出之固態調焦透鏡兼具微小化、積體化、可單一或陣列使用、及系統整合性高等優點。文末亦提出一些下一代固態調焦透鏡之設計理念,以期達到更佳的固態調焦透鏡效能,及更寬廣的應用範圍。
Microlens fabrication is a main technology in MOEMS field, and is broadly applied to image forming, optical communication, and biotechnology. In the past few years, more and more people started to study tunable focal length mocrolens. Because of the development of tunable focal length microlens, it made simpler system designs and smaller devices volumes other than using the out-of–plane optical bench.
We proposed a new type solid tunable focal length microlens by combining thermal actuators and choose PDMS as lens material. Besides, we discussed several microlens design parameters by using finite element analysis to find out best design trend. The measurement results showed the feasibility of solid tunable focal length microlens and agreed with the simulation results. The focal length varies from 2851 micrometers to 1712 micrometers, and the response time is about 1.6 seconds.
The solid tunable focal length microlens in our study is still a prototype. We also proposed some new ideas for next generation for better performance in the end of this thesis.
[1] Z.D. Popovic, R.A. Sprague and G.A.N. Connell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt., 27, pp. 1281-1284, 1988.
[2] H. Toshiyoshi, G.-D.J. Su, J. LaCosse, and M.C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," J. Lightwave Technology, 21, pp. 1700-1708, 2003.
[3] P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photonics Lett., 9, pp. 1367-1369, 1977.
[4] J. Shimada, O. Ohguchi, and R. Saeada, "Microlens fabricated by the planar process," J. Lightwave Technology, 9, pp. 571-576, 1991.
[5] Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J.C. Woo, "Semiconductor microlenses fabricated by one-step wet etching," IEEE Photonics Lett., 12, pp. 507-509, 2002.
[6] C.S. Lee, and C.H. Han, "A novel refractive silicon microlens array using bulk micromachining technology," Sensors and Actuators A, 88, pp. 87-90, 2001.
[7] N.F. Borrelli, D.L. Morse, R.H. Bellmann, and W.L. Morgan, "Photolytic technique for producing microlenses in photosensitive glass," Appl. Opt., 24, pp. 2520-2525, 1985.
[8] S.-K. Lee, K.-C. Lee, and S.S. Lee, "Microlens fabrication by the modified LIGA process," IEEE MEMS'02, Las Vegas, Navada, Jan. 2002, pp. 544-547.
[9] S.K. Lee, D.S. Kim, S.S. Yang, S.S. Lee, and T.H. Kon, "Microlens fabrication by the modiied LIGA process and its modeling and analysis," IEEE Optical MEMS, Lugano, Switzerland, Aug. 2002, pp. 77-78.
[10] J. Hsieh, C.-J. Wen, H.-H. Lin, H.-L. Lin, Y.-C. Hu, H.-Y. Chou, C.-F. Lai, and W. Fang, "The study on SU-8 micro cylindrical lens for laser induced fluorescent application," IEEE Optical MEMS, Waikoloa, Hawaii, Aug. 2003, pp.65-66.
[11] N.E.S. Farrington, and S. Iezekiel, "Investigations into the use of SU-8 in the fabrication of a micro-optical bench for hybrid optoelectronic integration and packaging," IEEE High Frequency Postgraduate Student Colloquium, Sep. 2001, pp. 164-167.
[12] A.W. Lohmann and S. Sinzinger, "arrays of doublet lenses," Optik, 93, pp. 84-86, 1992.
[13] D.L. MacFarlane, V. Narayan, J.A. Tatum, W.R. Cox, T. Chen, and D.J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photonics Lett., 6, pp. 1112-1114, 1994.
[14] 強玲英, 楊啟榮, "點膠滴置法製作折射視為透鏡陣列及其複製性之研究," 第十七屆機械工程研討會, 高雄, 民國89年12月, 第369至375頁.
[15] S. Sinzinger, and J. Jahns, Microoptics, 1st Ed., New York, NY: WILEY-VCH, 1999.
[16] L.G. Commander, S.E. Day, and D.R. Selvian, “Variable focal length microlenses,” Optics communications, 177, pp. 157-170, 2001.
[17] T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett., 82, pp. 316-318, 2003.
[18] S.K. Cho, H. Moon, and C.J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. MEMS, 12, pp. 70-80, 2003.
[19] http://www.newscenter.philips.com/InformationCenter/NewsCenter/FPressRelease.asp?lArticleId=3240&lNodeId
[20] S.-H. Ahn and Y.-K. Kim, “Proposal of human eye's crystalline lens-like variable focusing lens,” Sensors and Actuators A, 78, pp. 48-53, 1999.
[21] D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett., 82, pp. 3171-3172, 2003.
[22] N. Chronis, G.L. Liu, K.-H. Jeong, and L.P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Optics Express, 11, pp. 2370-2378, 2003.
[23] K.-H. Jeong, G.L. Liu, N. Chronis, and L.P. Lee, “Tunable microdoublet lens array,” Optics Express, 12, pp. 2494-2500, 2004.
[24] J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng., 14, pp. 675-680, 2004.
[25] M. Agarwal, R.A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng., 14, pp. 1665-1673, 2004.
[26] S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channals: principle and characterization," Lab on a Chip, 3, pp. 40-45, 2003.
[27] D. Armani, C. Liu, and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachning," IEEE MEMS'99, Orlando, Florida, Jan. 1999, pp. 222-227
[28] K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,' J. Micromech. Microeng. 12, pp. 1-6, 2002
[29] K. Hoshino and I. Shimoyama, "An elastic thin-film microlens array with a pneumatic actuator," IEEE MEMS’01, Interlaken, Switzerland, Jan. 2001, pp. 321-324.
[30] K. Hoshino and I. Shimoyama, "Analysis of elastic micro optical components under large deformation," J. Micromech Microeng., 13, pp. 149-154, 2003.
[31] Dow Corning SYLGARD®184 datasheets
[32] D.A. Chang-Yen, R.K. Eich, and B.K. Gale, "A monolithic PDMS waveguide system fabricated using soft-lithography techniques," J. Lightwave Technologhy, 23, pp. 2088-2093, 2005.
[33] W. Riethmuller, and W. Benecke, "Thermally excited silicon microactuators," IEEE Transactions on Electron Device, 35, pp. 758-763, 1988.
[34] W. Benecke, and W. Riethmuller, "Applications of silicon-microactuators based on bimorph structures," IEEE MEMS'89, Salt Lake City, UT, Feb. 1989, pp.116-120.
[35] T. Ebefors, E. Kalvesten, and G. Stemme, "New small radias joints based on thermal shrinkage of polyimide in V-grooves for robust self assembly 3D microstructures," J. Micromech. Microeng., 8, pp. 188-194, 1998.
[36] T. Ebefors, E. Kalvesten, and G. Stemme, "Dynamic actuation of polyimide V-groove joints by electrical heating," Sensors and Actuators, 67, pp. 199-204, 1998.
[37] T. Ebefors, J.U. Mattsson, E. Kalvesten, and G. Stemme, "A robust micro conveyer realized by arrayed polyimide joint actuators," IEEE MEMS'99, Orlando, Florida, Jan. 1999, pp. 576-581.
[38] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, "Thermo-magnetic metal flexture actuators," Technical Digest, IEEE International Solid State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1992, pp. 73-75.
[39] J.H. Comtois, and V.M. Bright, "Applications for surface-micromachined polysilicon thermal actuators and arrays," Sensors and Actuators A, 58, pp. 19-25, 1997.
[40] W.-C. Chen, C.-C. Chu, J. Hsieh, and W. Fang, "A reliable single-layer out-of-plane micromachined thermal actuators," Sensors and Actuators A, 103, pp. 48-58, 2003.