簡易檢索 / 詳目顯示

研究生: 游濟陽
Yu, Chi-Yang
論文名稱: 錫基無鉛銲料與鎳、銅、及新穎銅鋅合金底層金屬接點之相關界面反應、微結構變化及衝擊可靠度
Interfacial Reaction, Microstructure Variation, and Impact Reliability of Sn-based Pb-free Solder Joints with Ni, Cu, and Novel Cu-Zn Under Bump Metallurgy
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 林光隆
Lin, Kwang-Lung
高振宏
Kao, C Robert
劉國全
Liu, Kuo-Chuan
李建勳
Lee, Chien-Hsun
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 200
中文關鍵詞: 無鉛銲料凸塊底層金屬界面反應銅鋅合金可靠度銲接
外文關鍵詞: Pb-free solder, Under-bump Metallurgy, Interfacial reaction, Cu-Zn alloy, Reliability, Solder joint
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 覆晶(Flip-Chip)銲接結構中,銲料合金通常連結晶片與基板的鎳與銅基凸塊底層金屬。其中,銲料合金與凸塊底層金屬材料的選擇是影響銲接點微結構、相生成與可靠度的重要議題。在此研究中,錫基無鉛銲料接點界面反應、結構變化與衝擊可靠度將分成六個主題來深入探討。
    (1) 在Ni/Sn-Ag-Cu/Cu覆晶結構中,探討鎳添加對微結構變化與銲接界面反應。銲接結構迴銲後於150 oC下時效熱處理,Ni與Cu元素在銅與鎳凸塊底層金屬間交互作用,Ni往銅端擴散,Cu往鎳端遷移,影響兩端的界面反應,兩種不同鎳含量的(Cu,Ni)6Sn5介金屬化合物生成於鎳端界面。相對地,銅端凸塊底層金屬之界面只有一層厚的低鎳含量(Cu,Ni)6Sn5與一層薄(Cu,Ni)3Sn生成。當微量鎳添加於銲料合金中,其接點微結構與相生成因此改變。熱處理對於Ni與Cu元素的重新分布關聯著接合界面(Cu,Ni)6Sn5介金屬化合物的生成機制。
    (2) 高低鎳含量(Cu,Ni)6Sn5介金屬化合物的生成對Sn-Ag-Cu/Ni銲點衝擊可靠度是關鍵影響因素。藉由高速剪應力衝擊測試,破壞形貌分析顯示高與低鎳含量(Cu,Ni)6Sn5的雙相界面促使裂痕易成核於介金屬化合物內。裂痕的延伸與介金屬化合物的韌性有一定程度的關係。壓痕測試結果指出:高鎳含量(Cu,Ni)6Sn5相對於低鎳含量(Cu,Ni)6Sn5有較低的韌性,使裂痕易延著高鎳含量(Cu,Ni)6Sn5延伸。
    (3) 比起solder/Ni接合界面,solder/Cu接合界面有較厚的介金屬化合物伴隨許多孔洞的生成。發展新的凸塊底層金屬以取代舊有的銅凸塊底層金屬係值得考量的選項。以銅鋅合金作為新穎凸塊底層金屬材料並探討其與純錫間之界面反應。經實驗後發現銲料與銅鋅合金接點處銅錫介金屬化合物的成長與孔洞明顯被抑制。藉由穿透式電子顯微鏡與場發射式電子微探儀觀察及分析發現CuZn與Cu-Zn-Sn兩種富鋅相生成,其相生成機制可由熱力學與動力學之觀點來探討。
    (4) 在迴銲的過程,Cu與Zn從銅鋅凸塊底層金屬溶入熔融銲料中,進而影響銲料組成與微觀結構。探討銲料與銅鋅凸塊底層金屬間液態反應係重要課題。與solder/Cu銲接點相比,solder/Cu-Zn銲接點有較粗大的共晶結構與較小的Cu6Sn5析出於銲料內,接合界面上相生成也因Zn元素的溶入有所影響。研究證實,在solder/Cu-Zn銲接點中「迴銲時間」與「鋅於凸塊底層金屬內濃度」控制著接點微結構變化與相的演進。
    (5) 界面介金屬化合物的性質通常影響銲點可靠度。 Cu6Sn5是錫基銲料與銅凸塊底層金屬主要的界面化合物,其晶體結構隨溫度不同而改變。經250 oC高溫迴銲,Cu6Sn5呈現六方晶結構(η相)。於150 oC熱處理後,Cu6Sn5轉變以單斜晶結構(η’相)存在。在銅鋅凸塊底層金屬的銲接點內,Zn溶入Cu6Sn5內生成Cu6(Sn,Zn)5介金屬化合物。利用X光繞射儀鑑定與熱叉分析儀分析,斷定Cu6(Sn,Zn)5相為一個穩定的六方晶結構,且不隨溫度產生相變化。熱力學計算也證明鋅的溶入穩定Cu6(Sn,Zn)5的生成。
    (6) 評估銅鋅凸塊底層金屬應用於Ni/solder/Cu-Zn覆晶結構的可行性。比較Ni/solder/Cu銲接點,Ni/solder/Cu-Zn有較薄的介金屬化合物,界面上的介金屬化合物隨熱處理時間增加緩慢成長,界面上也無任何孔洞生成。元素於鎳端與銅鋅端間的交互作用行為也因為鋅溶入銲料內而被抑制。Ni/solder/Cu-Zn銲接結構優異的熱穩定性主要歸因於鋅元素的分布阻擋了其他元素間的劇烈反應。
    綜上所述,新穎的銅鋅凸塊底層金屬顯現出許多接合上的優勢,包括:(一)減少銅錫介金屬化合物生成、(二)抑制界面孔洞產生、(三)生成穩定的Cu6(Sn,Zn)5介金屬化合物、(四)阻止元素的交互作用於Ni/solder/Cu-Zn中。由此研究得知銅鋅合金是具有潛力且可用於先進封裝製程的凸塊底層金屬材料。


    In the flip-chip (FC) solder joint, solder alloys usually connect with Ni and Cu based under bump metallurgies (UBMs) at chip-side and substrate-side, respectively. The material selection for solder alloys and UBM material is a critical issue to affect the microstructure, phase formation, and the reliability of the solder joints. In this study, the interfacial reaction, microstructure variation, and impact reliability of Sn-based Pb-free solder joints with Ni, Cu, and novel Cu-Zn UBMs are discussed and categorized into six topics.
    (1) Microstructural variation and interfacial reaction in Ni/Sn-Ag-Cu/Ni assemblies with and without Ni doping
    Ni and Cu elements cross-interacted between the Cu and Ni UBMs during thermal aging and affected the interfacial reactions at both Cu and Ni sides. Dual-phased (Cu,Ni)6Sn5 intermetallic compounds (IMCs), which has high and low Ni concentration, formed at the solder/Ni interface. In contrast, thicker low-Ni (Cu,Ni)6Sn5 and thin (Cu,Ni)3Sn layers formed at the Cu side. The Ni doping into solder varied the microstructure of solder alloys and the formation of interfacial IMCs. The re-distribution of Ni and Cu was correlated to the formation mechanism of interfacial (Cu,Ni)6Sn5.
    (2) Effect of dual-phased (Cu,Ni)6Sn5 IMCs on the impact reliability of
    Sn-Ag-Cu/Ni solder joints
    By employing the high-speed shear impact test, the impact fracture morphology reveals that the interface of high-Ni (H)/low-Ni (L) (Cu,Ni)6Sn5 facilitates the crack nucleation within the IMC. It is believed that the crack propagation depends on the fracture toughness of interfacial IMCs. The indentation data shows that bulk H-(Cu,Ni)6Sn5 exhibits distinctly lower fracture toughness than bulk L-(Cu,Ni)6Sn5. In correlating the impact fracture behavior and mechanical properties of two kinds of (Cu,Ni)6Sn5, cracks tend to propagate through H-(Cu,Ni)6Sn5 due to the relatively low fracture toughness of H-(Cu,Ni)6Sn5.
    (3) Development of a novel Cu-Zn UBM for Pb-free solder joints
    To suppress the thicker IMCs and voids at the solder/Cu interface, the Cu-Zn alloy was designed for a novel UBM material. The interfacial reactions of Sn/Cu-xZn (x = 0, 15 and 30 at.%) solder joints were investigated. Interestingly, the growth of Cu-Sn IMCs was significantly reduced and no void was found in the Sn/Cu-Zn solder joints after thermal aging. Transmission electron microscopy (TEM) images and the field emission electron probe microanalyzer (FE-EPMA) analysis show that there are two types of Zn-rich phases, i.e. CuZn and Cu-Zn-Sn phases, to form in Sn/Cu-Zn joints. The formation mechanisms of IMCs were probed and proposed with regard to the thermodynamics and kinetics.
    (4) Liquid-state reaction of Sn-Ag-Cu solders and the novel Cu-Zn UBM
    During the reflow process, Cu and Zn atoms would dissolve from the Cu-Zn UBM into the molten solders, leading to the variation of the composition in the solders. Then, the composition variation further altered the microstructure of the solders. In comparison with the Sn-Ag-Cu/Cu, it was found that the coarser eutectic region and smaller Cu6Sn5 IMCs inside the solder matrix of Sn-Ag-Cu/Cu-Zn. In addition, the interfacial reaction was also affected by Zn dissolution. In this study, it was demonstrated that the microstructural variation and the phase evolution in the solder joints were controlled by the reflow time and the Zn concentration in the Cu-Zn UBM.
    (5) Characterization of the Cu6(Sn,Zn)5 intermetallic compound
    Cu6Sn5 is a dominant IMC at the Sn-based solder/Cu joint interface. The crystal structure of Cu6Sn5 varies with temperature. After reflow at 250 oC, the interfacial Cu6Sn5 revealed hexagonal structure (η-Cu6Sn5). During aging at 150 oC, hexagonal η-Cu6Sn5 would transform into monoclinic η’-Cu6Sn5. According to literature, the phase transformation between η’ and η would induce crack easily propagating through the Cu6Sn5 at the solder joint interface. In the novel solder/Cu-Zn joints, and Zn would dissolve into Cu6Sn5 to form the Cu6(Sn,Zn)5 IMC at the interface. X-ray diffraction and differential scanning calorimetry analyses show that doping small amounts of Zn into Cu6(Sn,Zn)5 can stabilize the hexagonal structure during the thermal aging process. Thermodynamic calculation also demonstrates that Zn can stabilize the hexagonal Cu6(Sn,Zn)5.
    (6) Application of Cu-Zn UBM on the Ni/Sn-Ag-Cu/Cu-Zn assemblies
    The feasibility of novel Cu-Zn UBM applied for the Ni/solder/Cu-Zn assemblies was also evaluated. In comparison with the Ni/Sn-Ag-Cu/Cu solder joint, Ni/Sn-Ag-Cu/Cu-Zn solder joints revealed thinner Cu6Sn5-based IMCs at both Ni/Sn-Ag-Cu and Sn-Ag-Cu/Cu-Zn interfaces after aging. (Cu,Ni)6(Sn,Zn)5/(Cu,Ni)6Sn5 dual-phase formed at the Ni side while (Cu,Ni)6(Sn,Zn)5 single-phase at the Cu-Zn side. The interfacial IMCs grew very slowly, and no void formed in these Zn-contained solder joints during thermal aging. Additionally, the dissolved Zn in the solder alloy reduced the elemental cross-interaction between the Ni and Cu-Zn substrates. The noticeable thermal stability of Ni/Sn-Ag-Cu/Cu-Zn solder joints is attributed to the Zn re-distribution retarding the reaction of Ni, Cu and Sn. Phase formation and IMCs suppression mechanisms in Ni/Sn-Ag-Cu/Cu-Zn solder joints were probed and discussed.
    In summary, novel Cu-Zn UBM shows lots of advantages for soldering, including: (I) reduction of Cu-Sn IMCs, (II) suppression of voids at the interface, (III) formation of the a hexagonal Cu6(Sn,Zn)5, and (IV) retardation of the elemental cross-interaction in the Ni/solder/Cu-Zn assemblies. The Cu-Zn alloys could be a potential UBM material for the advanced electronic packaging.

    Contents… I List of Tables… VII Figures Caption… IX Abstract… XVII Chapter I Introduction… 1 1.1 Background… 1 1.2 Motivations and Goals in This Study… 2 1.2.1 Effects of Minor Ni Doping on Microstructure Variations and Interfacial Reactions in the Ni/Sn-Ag-Cu/Cu Solder Joint Assembly… 4 1.2.2 Impact Reliability of Sn-Ag-Cu/Ni Solder Joints... 5 1.2.3 Development of Novel Cu-Zn Under-Bump Metallurgy for Pb-free Solder Joints… 6 1.2.4 Liquid-State Reaction of Sn-Ag-Cu/Cu-Zn Solder Joints… 7 1.2.5 Characterization of the Cu6(Sn,Zn)5 Intermetallic Compound… 8 1.2.6 Application of Novel Cu-Zn Under-Bump Metallurgy on Ni/solder/Cu-Zn Joint Assemblies… 9 Chapter II Literature Review… 10 2.1 Electronic Package… 10 2.2 Flip Chip Technology… 11 2.3 Solder Bump… 12 2.3.1 Sn-Pb Solder… 13 2.3.2 Pb-free Solder… 15 2.4 Under Bump Metallization… 17 2.4.1 Ni-Based UBM… 17 2.4.2 Cu-Based UBM… 20 2.5 Metallurgical Reactions in Pb-Free Solder Joints… 21 2.5.1 Cross-Interaction in Ni/solder/Cu Assemblies… 21 2.5.2 Metallurgical Reactions between Pb-free Solder and Ni UBM……………………………………..22 2.5.3 Metallurgical Reactions between Pb-free Solder and Cu UBM… 23 2.6 Zn Addition to Sn-Based Solder Alloy on Cu-Based UBM… 24 2.6.1 Effects of Sn-Based Solder with Minor Zn Addition on Interfacial Reaction and Microstructure Variation… 24 2.6.2 Effects of Zn Doping on the Formation of Intermetallics and the Reliability of Sn-based Solder on the Cu UBM… 26 2.7 Effects of Minor Elemental Doping on the Thermal Stability of Cu6Sn5… 27 Chapter III Experimental Procedures… 59 3.1 Preparation and Analysis for Cu/Solder/Ni Solder Joint Assemblies… 59 3.1.1 Fabrication of Cu/Solder/Ni Solder Joint Assemblies… 59 3.1.2 Analysis Methods for the Cu/Sn-Ag-Cu/Ni Solder Joint Assemblies… 60 3.2 High Speed Shear Testing and Characterization Analyzing for Sn-Ag-Cu/Ni Solder Joints… 61 3.3 Preparation and Analysis for Solder/Cu-Zn Joints after Solid-State reaction… 62 3.3.1 Fabrication of Sn/Cu-Zn Solder Joints under Solid-State Heat Treatment… 62 3.3.2 Microstructural Evaluation and Compositional Analysis after Solid-State Thermal Aging… 62 3.4 Preparation and Analysis for Solder/Cu-Zn Joints after Liquid-State reaction… 63 3.4.1 Fabrication of Sn-Ag-Cu/Cu-Zn Solder Joints under Liquid-State Heat Treatment… 63 3.4.2 Microstructural Evaluation and Compositional Analysis under Liquid-State Reaction… 64 3.5 Preparation and Analysis for the Cu6(Sn,Zn)5 Intermetallic Compound… 65 3.5.1 Fabrication of the Cu6(Sn,Zn)5 Intermetallic Compound… 65 3.5.2 Analysis for the Cu6(Sn,Zn)5 Intermetallic Compound… 66 3.6 Preparation and Analysis for the Ni/Sn-Ag-Cu/Cu-Zn Solder Joint Assemblies… 66 3.6.1 Fabrication of the Ni/Sn-Ag-Cu/Cu-Zn Assemblies under Thermal Aging… 66 3.6.2 Microstructure and Composition Analysis of the Ni/Sn-Ag-Cu/Cu-Zn Assemblies… 67 Chapter IV Results and Discussion… 75 4.1 Microstructural Variation and Interfacial Reaction in Ni/Sn-3.0Ag-0.5Cu-xNi/Cu Sandwich Structures with and without Minor Ni Dopant… 75 4.1.1 Microstructural Evolution and Elemental Migration in the SAC and SAC-0.1Ni Solders… 75 4.1.2 IMCs Formation and Elemental Distribution at the Cu Side… 77 4.1.3 IMCs Formation and Elemental Distribution at the Ni/Au Side… 80 4.1.4 Summary for Ni Doping Effects on the Microstructural Variation and Phase Formation in the Ni/Sn-3.0Ag-0.5Cu-xNi/Cu Assemblies… 82 4.2 Impact Crack Propagation through the Dual-Phased (Cu,Ni)6Sn5 Layer in Sn-Ag-Cu/Ni Solder Joints… 95 4.2.1 Interfacial Reaction and Phase Formation Mechanism in the Sn-Ag-Cu/Ni Solder Joints… 95 4.2.2 Impact Testing and Fracture Analysis… 96 4.2.3 Mechanical Properties of H-(Cu,Ni)6Sn5 and H-(Cu,Ni)6Sn5 IMCs… 97 4.2.4 The Methods to Control the Formation of Dual-Phased (Cu,Ni)6Sn5… 99 4.3 Development of a Novel Cu-Zn UBM for Soldering: Solid-State Reaction in Sn/Cu-Zn solder joints during aging… 105 4.3.1 Microstructures and phase formation at the Sn/Cu-Zn interfaces… 105 4.3.2 Growth of IMCs and TEM analysis at the Sn/Cu-Zn interfaces… 107 4.3.3 Growth mechanisms of Cu(Zn,Sn) and CuZn phases during thermal aging… 110 4.3.4 Effects of Cu(Zn,Sn) and CuZn formation on the growth of Cu-Sn IMCs… 113 4.3.5 Summary for the Correlation between the Zn Content and the Phase Formation in the Cu-Zn Solder Joints… 114 4.4 Liquid-State Reaction of Sn-Ag-Cu Solders and the Novel Cu-Zn UBM… 124 4.4.1 Microstructural Variation and Phase Morphologies in the Solders… 124 4.4.2 Compositional Variation and Elemental Distribution in the Solders… 126 4.4.3 Phase Evolution and Compositional Variation at the Interfaces between the Solders and the Substrates… 129 4.4.4 Summary for the Effects of Zn Content and Reflow Time on the Microstructure and the Phase Evolution… 131 4.5 Characterization of the Cu6(Sn,Zn)5 Intermetallic Compound… 142 4.5.1 X-Ray Diffraction Analysis for the Structure of Cu6Sn5 and Cu6(Sn,Zn)5 in the Solder Joint Before and After Thermal Aging… 142 4.5.2 X-Ray Diffraction Analysis for the Structure of Cu6Sn5 and Cu6(Sn,Zn)5 in the Sn-Cu(-Zn) Alloys… 144 4.5.3 Differential Scanning Calorimetry Analysis for the Structure Transformation of Cu6Sn5 and Cu6(Sn,Zn)5… 144 4.5.4 Thermodynamic Calculation for the Stability of Cu6(Sn,Zn)5… 145 4.6 Application of Novel Cu-Zn UBM on the Ni/Sn-Ag-Cu/Cu-Zn Solder Joint Assemblies… 152 4.6.1 Interfacial Microstructural Evolution and Phase Formation… 152 4.6.2 Elemental Distribution and Quantitative Analysis at the Joint Interfaces… 155 4.6.3 The Elemental Diffusion and Cross-Interaction in the Sn-Ag-Cu Solder Alloy… 158 4.6.4 The Suppression Mechanisms of IMCs Growth… 160 Chapter V Conclusions… 172 References… 175 Publication Lists… 196 International Conference Presentation… 199

    1. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
    2. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, 1996, pp. 26-30.
    3. G.R. Blackwell, “The Electronic Packaging Handbook”, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
    4. T.K. Lee, H. Ma, K.C. Liu and J. Xue, “Impact of isothermal aging on long-term reliability of fine-pitch ball grid array packages with Sn-Ag-Cu solder interconnects: surface finish effects”, J. Electron. Mater. 39 (2010) 2564.
    5. C.Y. Yu, T.K. Lee, M. Tsai, K.C. Liu and J.G. Duh, “Effects of minor Ni doping on microstructural variations and interfacial reactions in Cu/Sn-3.0Ag-0.5Cu-xNi/Au/Ni sandwich structures”, J. Electron. Mater. 39 (2010) 2544.
    6. C.S. Liu, C.E. Ho, C.S. Peng and C.R. Kao, “Effects of joining sequence on the interfacial reactions and substrate dissolution behaviors in Ni/Solder/Cu joints”, J. Electron. Mater. 40 (2011) 1912.
    7. C.W. Chang, S.C. Yang, C.T. Tu and C.R. Kao, “Cross-interaction between Ni and Cu across Sn layers with different thickness”, J. Electron. Mater. 36 (2007) 1455.
    8. S.J. Wang and C.Y. Liu, “Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structures”, J. Electron. Mater. 35 (2006) 1955.
    9. C.Y. Liu, H.W. Tseng, J.M. Song, “Variation of mechanical property and microstructure across Sn solder joint in Cu/Sn/Ni structure”, Electrochem. Solid-State Lett. 13 (2010) H298.
    10. C.Y. Yu and J.G. Duh, “Suppressing the growth of Cu-Sn intermetallic compounds in Ni/Sn-Ag-Cu/Cu-Zn solder joints during thermal aging”, Intermetallics 26 (2012) 11.
    11. K.J. Puttlitz and K.A. Stalter, “Handbook of Lead-Free Solder Technology for Microelectronic Assemblies”, Marcel Dekker, Inc., New York, 2004, pp. 1-48.
    12. B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878.
    13. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17 (2002) 1612.
    14. K.S. Bae and S.J. Kim, “Microstructure and adhesion properties of Sn-0.7Cu/Cu solder joints”, J. Mater. Res. 17 (2002) 743.
    15. H.W. Miao and J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Mater. Chem. Phys. 71 (2001) 255.
    16. D.R. Frear, J.W. Jang, J.K. Lin and C. Zang, “Pb-free solders for flip-chip interconnects”, JOM, 53 (2001) 28.
    17. M. McCormack, S. Jin, G.W. Kammlott and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63 (1993) 15.
    18. K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci., 5 (2001) 55.
    19. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng., A 333 (2002) 106.
    20. J. Karppinen, J. Li, J. Pakarinen, T.T. Mattila and M. Paulasto-Kröckel, “Shock impact reliability characterization of a handheld product in accelerated tests and use environment”, Microelectron. Reliab. 52 (2012) 190.
    21. J.M. Song, Y.R. Liu, Y.S. Lai, Y.T. Chiu and N.C. Lee, “Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints”, Microelectron. Reliab. 52 (2012) 180.
    22. A. Agwai, I. Guven and E. Madenci, “Drop-shock failure prediction in electronic packages by using peridynamic theory”, IEEE Trans. on Comp., Pack. and Manuf. Tech. 2 (2012) 439.
    23. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu solder joints on Cu substrates. I: Effects of loading and processing conditions”, J. Electron. Mater. 41 (2012) 375.
    24. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu solder joints on Cu substrates. II: Fracture mechanism map”, J. Electron. Mater. 41 (2012) 412.
    25. I.E. Anderson and J.L. Harringa, “Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints”, J. Electron. Mater. 35 (2006) 94.
    26. I.E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications”, J. Mater. Sci: Mater. Electron. 18 (2007) 55.
    27. M.G. Cho, S.K. Kang, D.Y. Shih and H.M. Lee, “Effects of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging”, J. Electron. Mater. 36 (2007) 1501.
    28. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu and W.K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying”, JOM 56 (2004) 34.
    29. F.J. Wang, X. Ma and Y. Qian, “Improvement of microstructure and interface structure of eutectic Sn-0.7Cu solder with small amount of Zn addition”, Scripta Mater. 53 (2005) 699.
    30. C.M.L. Wu, D.Q. Yu, C.M.T. Law and L. Wang, “Properties of lead-free solder alloys with rare earth element additions”, Mater. Sci. Eng. R: Rep. 44 (2004) 1.
    31. M.G. Cho, S.K. Seo and H.M. Lee, “Wettability and interfacial reactions of Sn-based Pb-free solders with Cu-xZn alloy under bump metallurgies”, J. Alloys Comp. 474 (2009) 510.
    32. C.Y. Yu, K.J. Wang and J.G. Duh, “Interfacial reaction of Sn and Cu-xZn substrates after reflow and thermal aging”, J. Electron. Mater. 39 (2010) 230.
    33. Y.M. Kim, H.R. Roh, S. Kim and Y.H. Kim, “Kinetics of intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu solder and Cu-Zn alloy substrates”, J. Electron. Mater. 39 (2010) 2504.
    34. W.Y. Chen, C.Y. Yu and J.G. Duh, “Suppressing the growth of interfacial Cu-Sn intermetallic compounds in the Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joint during thermal aging”, J. Mater. Sci. 47 (2012) 4012.
    35. C.Y. Oh, H. Roh, Y.M. Kim, J.S. Lee, H.Y. Cho and Y. Kim, “A new solder wetting layer for Pb-free solders”, J. Mater. Res. 24 (2009) 297.
    36. C.Y. Yu and J.G. Duh, “Microstructural variation and phase evolution in the reaction of Sn-xAg-Cu solders and Cu-yZn substrates during reflow”, J. Electron. Mater. 39 (2010) 2627.
    37. M.G. Cho, S.K. Seo and H.M. Lee, “Undercooling, microstructures, and hardness of Sn-rich Pb-free solders on Cu-xZn alloy under bump metallurgies”, Mater. Trans. 50 (2009) 2291.
    38. H.F. Zou, Q.K. Zhang and Z.F. Zhang, “Eliminating interfacial segregation and embrittlement of bismuth in SnBi/Cu joint by alloying Cu substrate”, Scripta Mater. 61 (2009) 308.
    39. H.M. Lin and J.G. Duh, “Interfacial reaction between Sn-3.0Ag-0.5Cu liquid solder and Ni-xZn novel UBM layers”, Surf. Coat. Tech 206 (2011) 1941.
    40. F.X. Che, J.E. Luan and X. Baraton, “Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders”, Proc. 58th Electronic Components and Technology Conf. (2008) pp. 485-490.
    41. W.H. Zhu, L. Xu, J. HL Pang, X.R. Zhang, E. Poh, Y.F. Sun, Anthony Y.S. Sun, C.K. Wang and H.B. Tan, “Drop reliability study of PBGA assemblies with SAC305, SAC105 and SAC105-Ni solder ball on Cu-OSP and ENIG surface finish”, Proc. 58th Electronic Components and Technology Conf. (2008) pp. 1667-1672.
    42. K. Nogita, C.M. Gourlay and T. Nishimura, “Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates”, JOM 61 (2009) 45.
    43. Y.W. Wang, C.C. Chang and C.R. Kao, “Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth”, J. Alloys Compd. 478 (2009) L1.
    44. P. Yao, P. Liu and J. Liu, “Interfacial reaction and shear strength of SnAgCu-xNi/Ni solder joints during aging at 150 °C”, Microelectron. Eng. 86 (2009) 1969.
    45. S. Kumar, J.Y. Park and J.P. Jung, “Analysis of high speed shear characteristics of Sn-Ag-Cu solder joints”, Electron. Mater. Lett. 7 (2011) 365.
    46. S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu and J.G. Duh, “Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn-Ag-Cu/Ni solder joints”, Mater. Lett. 80 (2012) 103.
    47. S. Kumar, D. Jung and J.P. Jung, “High-speed shear test for low alpha Sn-1.0%Ag-0.5%Cu (SAC-105) solder ball of sub-100-μm Dimension for Wafer Level Packaging”, IEEE Trans. on Comp., Pack. and Manuf. Tech. 3 (2013) 441.
    48. M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K.N. Tu, “Ductile-to-brittle transition in Sn–Zn solder joints measured by impact test”, Scripta Mater. 51 (2004) 641.
    49. C.S. Liu, C.E. Ho, C.S. Peng and C.R. Kao, “Effects of joining sequence on the interfacial reactions and substrate dissolution behaviors in Ni/Solder/Cu joints” J. Electron. Mater. 40 (2011) 1912.
    50. F. Gao and T. Takemoto, “Mechanical properties evolution of Sn-3.5Ag based lead-free solders by nanoindentation” Mater. Lett. 60 (2006) 2315.
    51. T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49 (2005) 1.
    52. W. Peng, E. Monlevade and M.E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu”, Microelectron. Reliab. 47 (2007) 2161.
    53. Y.K. Jee, Y.H. Ko and J. Yu, “Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad”, J. Mater. Res. 22 (2007) 1879.
    54. T.C. Chiu, K. Zeng, R. Stierman and D. Edwards and K. Ano, “Effect of thermal aging on board level drop reliability for Pb-free BGA packages”, Proc. 54th Electronic Components and Technology Conf., pp. 1256-1262.
    55. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508.
    56. A. Fawzy, “Effect of Zn addition, strain rate and deformation temperature on the tensile properties of Sn-3.3 wt.% Ag solder alloy”, Mater. Charact. 58 (2007) 323.
    57. M. McCormack and S. Jin, “Progress in the design of new lead-free solder alloys”, JOM 45 (1993) 36.
    58. M. McCormack, G.W. Kammlott, H.S. Chen and S. Jin, “New lead-free, Sn-Ag-Zn-Cu solder alloy with improved mechanical-properties”, Appl. Phys. Lett. 65 (1994) 1233.
    59. M. McCormack, S. Jin, G.W. Kammlott and H.S. Chen, “New Pb‐free solder alloy with superior mechanical properties”, Appl. Phys. Lett. 63 (1993) 15.
    60. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Mater. Sci. Eng. R: Rep. 27, 95 (2000).
    61. A. Sharif, M.N. Islam, Y.C. Chan, “Interfacial reactions of BGA Sn-3.5%Ag-0.5%Cu and Sn-3.5%Ag solders during high-temperature aging with Ni/Au metallization”, Mater. Sci. Eng. B 113 (2004) 184.
    62. R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook”, 2nd edition, Van Nostrand Reihold, New York, 1997.
    63. J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, 1995.
    64. http://electronicdesign.com/components/future-looks-bright-3d-integration
    65. J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and Applications”, McGraw-Hill, New York, 1999.
    66. J.H. Lau, “Cost analysis: Solder bumped flip chip versus wire bending”, IEEE Trans. on Electron. Pack. Manuf. Tech. 23 (1998) 4.
    67. http://en.wikipedia.org/wiki/Flip_chip
    68. K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng. R 38 (2002) 55.
    69. K.J. Puttlitz and K.A. Stalter, “Handbook of Lead-Free Solder Technology for Microelectronic Assemblies”, Marcel Dekker, Inc., New York, 2004, pp. 167-210.
    70. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams 1986”, ASM International: Materials Park, Ohio, 1986, p. 1848.
    71. 64. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, pp.423.
    72. http://www.himikatus.ru/art/phase-diagr1/Sn-Zn.php
    73. http://www.crct.polymtl.ca/FACT/phase_diagram.php?file=Ag-Sn.jpg&dir=SGTE
    74. http://www.metallurgy.nist.gov/phase/solder/agcusn.html
    75. C.C. Chang, Y.W. Lin, Y.W. Wang and C.R. Kao, “The effects of solder volume and Cu concentration on the consumption rate of Cu pad during reflow soldering”, J. Alloys Comp. 492 (2010) 99.
    76. S.C. Yang, C.C. Chang, M.H. Tsai and C.R. Kao, “Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni”, J. Alloys Comp. 499 (2010) 149.
    77. F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974.
    78. Y.H. Wu, C.Y. Yu, C.Y. Ho and J.G. Duh, “Retardation of (Cu,Ni)6Sn5 spalling in Sn-Ag-Cu/Ni solder joints via controlling the grain structure of Ni metallization layer”, Mater. Lett. (2013) (In Press).
    79. S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492.
    80. J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
    81. J.L. Fang, “Bondability & solderability of neutral electroless gold”, Plat. Surf. Finish. 88 (2001) 44.
    82. P. Snugovsky, P. Arrowsmith, M. Romansky, “Electroless Ni/immersion Au interconnects: Investigation of Black Pad in wire bonds and solder joints”, J. Electron. Mater. 30 (2001) 1262.
    83. S.S. Ha, J. Park and S.B. Jung, “Effect of Pd addition in ENIG surface finish on drop reliability of Sn-Ag-Cu solder joint”, Mater. Trans. 52 (2011) 1553.
    84. J.W. Yoon, B.I. Noh and S.B. Jung, “Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint”, J. Electron. Mater. 40 (2011) 1950.
    85. C.F. Tseng and J.G. Duh, “The influence of Pd on growth behavior of a quaternary (Cu,Ni,Pd)6Sn5 compound in Sn-3.0Ag-0.5Cu/Au/Pd/Ni-P solder joint during a liquid state reaction”, J. Mater. Sci. 48 (2013) 857.
    86. C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750.
    87. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17 (2002) 1612.
    88. K.J. Wang and J.G. Duh, “Shear and Pull Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Underbump Metallization During Aging”, J. Electron. Mater. 38 (2009) 2534.
    89. W.M. Chen, S.C. Yang, M.H. Tsai and C.R. Kao, “Uncovering the driving force for massive spalling in the Sn–Cu/Ni system”, Scripta Mater. 63 (2010) 47.
    90. K. Zeng, M. Pierce, H. Miyazaki and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective”, J. Electron. Mater. 41 (2011) 253.
    91. http://www.crct.polymtl.ca/fact/documentation/BINARY/Cu-Sn.jpg
    92. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita and K. Takahashi, “Micro Cu bump interconnection on 3D chip stacking technology”, Jpn. J. Appl. Phys. 43 (2004) 2264.
    93. B. Ebersberger and C. Lee, “Cu Pillar Bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects”, Proc. Electronic Components and Technology Conf. Proc. 57th (2008) p. 59.
    94. D. Monlevade, Eduardo and Weiqun Peng. “Failure mechanisms and crack propagation paths in thermally aged Pb-free solder interconnects”, J. Electron. Mater. 36 (2007) 783.
    95. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho and J. Yu, “Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition”, J. Electron. Mater. 35 (2006) 479.
    96. S.C. Yang, C.E. Ho, C.W. Chang and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res. 21 (2006) 2436.
    97. S.C. Yang, Y.W. Wang, C.C. Chang and C.R. Kao, “Analysis and experimental verification of the volume effect in the reaction between Zn-doped solders and Cu”, J. Electron. Mater. 37 (2008) 1591.
    98. G. Ghosh and M. Asta, “Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results”, J. Mater. Res. 20 (2005) 3102.
    99. A.K. Larsson, L. Stenberg and S. Lidin, “The Superstructure of Domain-Twinned:η’-Cu6Sn5”, Acta Cryst. B50 (1994) 636.
    100. N.T.S. Lee, V.B.C. Tan and K.M. Lim, “First-principles calculations of structural and mechanical properties of Cu6Sn5”, Appl. Phys. Lett. 88 (2006) 031913.
    101. M.Y. Li, Z.H. Zhang and J.M. Kim, “Polymorphic transformation mechanism of eta and eta' in single crystalline Cu6Sn5”, Appl. Phys. Lett. 98 (2011) 201901.
    102. K. Nogita, “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys”, Intermetallics 18 (2010) 145.
    103. U. Schwingenschlogl, C.D. Paola, K. Nogita and C.M. Gourlay, “The influence of Ni additions on the relative stability of η and η’ Cu6Sn5”, Appl. Phys. Lett. 96 (2010) 061908.
    104. K. Nogita and T. Nishimura, “Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys”, Scripta Mater. 59 (2008) 191.
    105. S. Lidin and S.Y. Piao, “The structure of Cu6Sn5-xSbx -- large effects of subtle doping”, Z. Anorg. Allg. Chem. 635 (2009) 611.
    106. S.J. Wang and C.Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint”, Scripta Mater. 55 (2006) 347.
    107. J.Y. Tsai, Y.C. Hu, C.M. Tsai and C.R. Kao, “A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni”, J. Electron. Mater. 32, 1203 (2003).
    108. C. Yu, J. Liu, H. Lu, P. Li and J. Chen, “First-principles investigation of the structural and electronic properties of Cu6-xNixSn5 (x = 0, 1, 2) intermetallic compounds”, Intermetallics 15, 1471 (2007).
    109. S.K. Kang, M.G. Cho, D.Y. Shih, S.K. Seo and M.L. Hyuck, “Controlling the interfacial reactions in Pb-free interconnections by adding minor alloying elements to Sn-rich solders”, Proc. 58th Electronic Components and Technology Conf. (2008) pp. 478-484.
    110. J.Y. Kim, Y.C. Sohn and Y. Jin, “Effect of Cu content on the mechanical reliability of Ni/Sn-3.5Ag system”, J. Mater. Res. 22 (2007) 770.
    111. C.Y. Yu and J.G. Duh, “Stabilization of hexagonal Cu6(Sn,Zn)5 by minor Zn doping of Sn-based solder joints”, Scripta Mater. 65 (2011) 783.
    112. C.Y. Chou and S.W. Chen, “Phase equilibria of the Sn-Zn-Cu ternary system”, Acta Mater. 54 (2006) 2393.
    113. T. Takenaka, S. Kanoa, M. Kajihara, N. Kurokawa and K. Sakamoto, “Growth behavior of compound layers in Sn/Cu/Sn diffusion couples during annealing at 433-473 K”, Mater. Sci. Eng. A 396 (2005) 115.
    114. J.W. Yoon and S.B. Jung, “Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5Ag-0.75Cu solder and Cu substrate”, J. Mater. Sci. 39 (2004) 4211.
    115. M.Y. Tsai, S.C. Yang, Y.W. Wang and C.R. Kao, “Grain growth sequence of Cu3Sn in the Cu/Sn and Cu/Sn-Zn systems”, J. Alloys Compd. 494 (2010) 123.
    116. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley, “Selected values of the thermodynamic properties of binary alloys”, American Society for Metals, Metals Park, Ohio, (1973) pp. 795-822.
    117. D.D. Perovic, L. Snugovsky, P. Snugovsky and J.W. Rutter, “Reactions in Sn corner of Cu-Sn-Zn alloy system”, Mater. Sci. Technol. 28 (2012) 120.
    118. M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi and K. Sato, “Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads”, J. Mater. Res. 19 (2004) 2887.
    119. C.H. Yu and K.L. Lin,” Early stage soldering reaction and interfacial microstructure formed between molten Sn-Zn-Ag solder and Cu substrate”, J. Mater. Res. 20 (2005) 1242.
    120. S.W. Chen, C.H. Wang, S.K. Lin and C.N. Chiu, “Phase diagrams of Pb-free solders and their related materials systems”, J. Mater. Sci: Mater. Electron. 18 (2007) 19.
    121. A. Hayashi, C.R. Kao and Y.A. Chang, “Reactions of solid copper with pure liquid tin and liquid tin saturated with copper”, Scripta Mater. 37 (1997) 393.
    122. T. Laurila, V. Vuorinen and M. Paulasto-Kro, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Mater. Sci. and Eng. R 68, 1-2 (2010) 1-3.
    123. J.O. Suh, K.N.Tu and N. Tamura, “A synchrotron radiation X-ray microdiffraction study on orientation relationships between a Cu6Sn5 and Cu substrate in solder joints”, JOM 58 (2006) 63.
    124. H.F. Zou, H.J. Yang and Z.F. Zhang, “Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals”, Acta Mater. 56 (2008) 2649.
    125. Y.C. Huang, S.W. Chen, C.Y Chou and W Gierlotka, “Liquidus projection and thermodynamic modeling of Sn-Zn-Cu ternary system”, J. Alloys Compd. 477 (2009) 283.
    126. A.T. Dinsdale, “SGTE data for pure elements”, Calphad-Comput. Coupling Ph. Diagrams Thermochem. 15 (1991) 317.
    127. M. Li, Z. Du, C. Guo and C. Li, “Thermodynamic optimization of the Cu-Sn and Cu-Nb-Sn systems”, J. Alloys Compd. 477 (2009) 104.
    128. W.Q. Shao, C.Y. Yu, W.C. Lu, J.G. Duh and S.O. Chen, “Study of the Zn occupancy leading to the stability improvement for Cu6Sn5 using a first-principles approach”, Mater. Lett. 93 (2013) 300.
    129. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello and C.A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys”, J. Electron. Mater. 29 (2000) 1122.
    130. G. Ghosh, “Thermodynamic Modeling of the Nickel-Lead-Tin System”, Metall. Mater. Trans. A 30A (1999) 1481.
    131. C.Y. Yu and J.G. Duh, “Growth mechanisms of interfacial intermetallic compounds in Sn/Cu-Zn solder joints during aging”, J. Mater. Sci. 47 (2012) 6467.
    132. W. Feng, C. Wang and M. Morinaga, “Electronic structure mechanism for the wettability of Sn-based solder alloys”, J. Electron. Mater. 31 (2002) 185.
    133. S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih and H.M. Lee, “The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni(P) under bump metallurgy”, J. Electron. Mater. 38 (2009) 2461.
    134. B.F. Dyson, T.R. Anthony and D. Turnbull, “Interstitial diffusion of copper in tin”, J. Appl. Phys. 38 (1967) 3408.
    135. D.C. Yeh and H.B. Huntington, “Extreme fast-diffusion system: Nickel in single-crystal tin”, Phys. Rev. Lett. 53 (1984) 1469.
    136. F.H. Huangf and H.B. Huntington, “Diffusion of Sb, Cd, Sn, and Zn in tin”, Phys. Rev. B 9 (1974) 1479.
    137. M. Lu, D.Y. Shih, S.K. Kang, C. Goldsmith, P. Flaitz, Effect of Zn doping on SnAg solder microstructure and electromigration stability, J. Appl. Phys. 106 (2009) 053509.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE