研究生: |
張欣怡 Chang, Hsin-Yi |
---|---|
論文名稱: |
多目標搜尋過程中搜尋策略與策略表現之探討 Search Strategy and its Performance in the Multiple Target Search Process |
指導教授: |
王明揚
Wang, Min-Yang |
口試委員: |
李昀儒
Lee, Yun-Ju 黃育信 Huang, Yu-Hsing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 目標搜尋 、搜尋策略 、多目標物 、搜尋表現 、眼動 |
外文關鍵詞: | target search, search strategy, multiple targets, search performance, eye movement |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
視覺為外界訊息輸入的主要通道,其於人獲取資訊的過程中扮演著重要的角色。日常生活中有許多任務需仰賴目標搜尋才得以完成,然而由於人的注意力資源有限,當面對大量且複雜的環境時,需將有限的注意力資源運用在與任務相關的資訊上,以提升獲取資訊的效率。透過與目標搜尋相關的文獻發現,多數研究著重探討目標物為單一個的情境,然而於現實環境中,目標物往往不只一個,即使有少數研究探討多目標物的情境,也多傾向於模型的推論與適用性,對於人在多目標物情境下的搜尋行為缺乏深入的探討與剖析。
因此,本研究以特徵聯結搜尋(Conjunction search)作業作為搜尋的任務,探討在目標物數目為10%、30%、50%、70%、90%的多目標物情境下,觀者的搜尋行為。並根據觀者凝視點的起始位置與視線軌跡移動的方向,提出編碼與歸納眼動路徑的方式,歸納個體所採取的目標搜尋策略。且以作業中正確率、搜尋時間與凝視點數目作為衡量策略表現的指標。
本研究提出的編碼與歸納方式,足以歸類85%的搜尋路徑,具有良好的適用性與一致性。在多目標物數目的情境中,觀者會採取單一與複合兩種搜尋策略,而單一搜尋策略又可細分成Z、W和O型搜尋模式。研究結果顯示,在目標物數目小於干擾物數目的情境下,採取單一搜尋策略的次數明顯多於複合搜尋策略,且確實在該情況下,單一搜尋策略花費較少的搜尋時間與凝視點數目,表現較佳。
Vision plays an important role in the process of information acquisition. In a daily life, we need to rely on the target search to complete various tasks. However, when facing the complex environments, limited attention need to be applied to the task-related information to improve the efficiency of information acquisition due to the limited attention resources. Through related literature, our study found that most studies emphatically discuss the target for a single situation, but in the real environment, target is often more than one. Even a few researches are about multiple target situation, is more inclined to examine the applicability of the model. There is a lack of in-depth discussion and analysis of human searching behavior in the context of multiple targets.
Therefore, in this study, discusses the viewer's search behavior in the case of multiple targets, which the number of the targets is 10%, 30%, 50%, 70% and 90%. According to the starting position of the viewer's fixation and the direction of the eye track movement, the method to code and to summarize the eye movement path is proposed. The target search strategy adopted by the individual is summarized. The accuracy, search time and the number of fixation were used as the indicators to measure the performance of the strategy.
The coding methods proposed in this study induced 85% of the search paths, and have good applicability and consistency. In multiple target search process, viewers will adopt exclusive and composite search strategies. The exclusive search strategy can be subdivided into the Z, W and O search patterns. The results show that when the number of targets is smaller than the number of distractors, the number of exclusive search strategy is significantly higher than that of composite search strategy. The exclusive search strategy spends less search time and fixation, which means it performs better in that situation.
中文參考文獻
1. 姜定宇、留佳莉、危芷芬、余振民(2009)。心理學導論。台灣:五南圖書出版股份有限公司。
2. 唐大崙、張文瑜(2006)。觀其眸子人焉廋哉—談眼球追蹤法探索傳播議題的可能性。中華傳播學會2006年年會論文。
3. 徐兆方、柳忠起、王興偉、張欣(2017)。多目標搜索過程中的眼動研究。生物醫學工程學雜誌,34(2),214-219。
4. 陳烜之(2007)。認知心理學。台灣:五南圖書出版股份有限公司。
5. 陳學志、賴惠德、邱發忠(2010)。眼球追蹤技術在學習與教育上的應用。教育科學研究期刊,55(4),39-68。
英文參考文獻
1. Alexander G. Reeves & Rand S. Swenson (1981). Disorders of the nervous system: a primer. Retrieved from https://reurl.cc/1Ej3m
2. Anderson, G. M., Heinke, D., & Humphreys, G. W. (2012). Bottom-up guidance to grouped items in conjunction search: Evidence for color grouping. Vision research, 52(1), 88-96.
3. Antes, J. R. (1974). The time course of picture viewing. Journal of experimental psychology, 103(1), 62.
4. Arani, T., Karwan, M. H., & Drury, C. G. (1984). A variable-memory model of visual search. Human Factors, 26(6), 631-639.
5. Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & psychophysics, 55(5), 485-496.
6. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: Expanding the useful field of view. JOSA A, 5(12), 2210-2219.
7. Blair, M. R., Watson, M. R., Walshe, R. C., & Maj, F. (2009). Extremely selective attention: Eye-tracking studies of the dynamic allocation of attention to stimulus features in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1196.
8. Carmody, D. P., Kundel, H. L., & Toto, L. C. (1984). Comparison scans while reading chest images. Taught, but not practiced. Investigative Radiology, 19(5), 462-466.
9. Chan, A. H., & Yu, R. (2010). Validating the random search model for two targets of different difficulty. Perceptual and motor skills, 110(1), 167-180.
10. Coutrot, A., Hsiao, J. H., & Chan, A. B. (2018). Scanpath modeling and classification with hidden Markov models. Behavior research methods, 50(1), 362-379.
11. Deng, X., Kahn, B. E., Unnava, H. R., & Lee, H. (2016). A “wide” variety: Effects of horizontal versus vertical display on assortment processing, perceived variety, and choice. Journal of Marketing Research, 53(5), 682-698.
12. Drury, C. G., & Hong, S. K. (2000). Generalizing from single target search to multiple target search. Theoretical Issues in Ergonomics Science, 1(4), 303-314.
13. Duchowski, A. T. (2007). Eye tracking methodology. Theory and practice, 328.
14. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological review, 96(3), 433.
15. Gilchrist, I. D., & Harvey, M. (2006). Evidence for a systematic component within scan paths in visual search. Visual Cognition, 14(4-8), 704-715.
16. Goldberg, J. H., & Helfman, J. I. (2010, March). Scanpath clustering and aggregation. In Proceedings of the 2010 symposium on eye-tracking research & applications (pp. 227-234). ACM.
17. Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics, 24(6), 631-645.
18. Goulet, C., Bard, C., & Fleury, M. (1989). Expertise differences in preparing to return a tennis serve: A visual information processing approach. Journal of sport and Exercise Psychology, 11(4), 382-398.
19. Hembrooke, H., Feusner, M., & Gay, G. (2006, March). Averaging scan patterns and what they can tell us. In Proceedings of the 2006 symposium on Eye tracking research & applications (pp. 41-41). ACM.
20. Hommel, B., Li, K. Z., & Li, S. C. (2004). Visual search across the life span. Developmental Psychology, 40(4), 545.
21. Hong, S. K., & Drury, C. G. (2002). Sensitivity and validity of visual search models for multiple targets. Theoretical Issues in Ergonomics Science, 3(1), 85-110.
22. Humphrey, D. G., & Kramer, A. F. (1997). Age differences in visual search for feature, conjunction, and triple-conjunction targets. Psychology and aging, 12(4), 704.
23. Just, M. A., & Carpenter, P. A. (1976). The role of eye-fixation research in cognitive psychology. Behavior Research Methods & Instrumentation, 8(2), 139-143.
24. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological review, 87(4), 329.
25. Khasawneh, M. T., Kaewkuekool, S., Bowling, S. R., Desai, R., Jiang, X., Duchowski, A. T., & Gramopadhye, A. K. (2003). The effects of eye movements on visual inspection performance. In IIE Annual Conference. Proceedings (p. 1). Institute of Industrial and Systems Engineers (IISE).
26. Krupinski, E. A., Tillack, A. A., Richter, L., Henderson, J. T., Bhattacharyya, A. K., Scott, K. M., ... & Weinstein, R. S. (2006). Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience. Human pathology, 37(12), 1543-1556.
27. Kundel, H. L., & Wright, D. J. (1969). The influence of prior knowledge on visual search strategies during the viewing of chest radioqraphs. Radiology, 93(2), 315-320.
28. Kundel, H. L., & La Follette Jr, P. S. (1972). Visual search patterns and experience with radiological images. Radiology, 103(3), 523-528.
29. Kundel, H. L., Nodine, C. F., Thickman, D., & Toto, L. (1987). Searching for lung nodules. A comparison of human performance with random and systematic scanning models. Investigative Radiology, 22(5), 417-422.
30. Lanyon, L. J., & Denham, S. L. (2004). A model of active visual search with object-based attention guiding scan paths. Neural Networks, 17(5-6), 873-897.
31. Li, A., Zhang, Y., & Chen, Z. (2017, July). Scanpath mining of eye movement trajectories for visual attention analysis. In Multimedia and Expo (ICME), 2017 IEEE International Conference on (pp. 535-540). IEEE.
32. Megaw, E. D., & Richardson, J. (1979). Target uncertainty and visual scanning strategies. Human Factors, 21(3), 303-315.
33. Michalski, R., Grobelny, J., & Karwowski, W. (2006). The effects of graphical interface design characteristics on human–computer interaction task efficiency. International Journal of Industrial Ergonomics, 36(11), 959-977.
34. Moreno, F. J., Reina, R., Luis, V., & Sabido, R. (2002). Visual search strategies in experienced and inexperienced gymnastic coaches. Perceptual and Motor skills, 95(3), 901-902.
35. Murata, A., & Furukawa, N. (2005). Relationships among display features, eye movement characteristics, and reaction time in visual search. Human factors, 47(3), 598-612.
36. Nalanagula, D., Greenstein, J. S., & Gramopadhye, A. K. (2006). Evaluation of the effect of feedforward training displays of search strategy on visual search performance. International Journal of Industrial Ergonomics, 36(4), 289-300.
37. Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031), 387.
38. Nickles III, G. M., Melloy, B. J., & Gramopadhye, A. K. (2003). A comparison of three levels of training designed to promote systematic search behavior in visual inspection. International journal of industrial ergonomics, 32(5), 331-339.
39. Ojanpää, H., Näsänen, R., & Kojo, I. (2002). Eye movements in the visual search of word lists. Vision Research, 42(12), 1499-1512.
40. Pashler, H. (2016). Attention. Psychology Press.
41. Pelz, J. B., Canosa, R., & Babcock, J. (2000). Extended tasks elicit complex eye movement patterns. In Proceedings of the 2000 symposium on Eye tracking research & applications (pp. 37-43). ACM.
42. Petrakis, E. (1987). Analysis of visual search patterns of dance teachers. Journal of Teaching in Physical Education, 6(2), 149-156.
43. Pieters, R., & Wedel, M. (2007). Goal control of attention to advertising: The Yarbus implication. Journal of consumer research, 34(2), 224-233.
44. Poisson, M. E., & Wilkinson, F. (1992). Distractor ratio and grouping processes in visual conjunction search. Perception, 21(1), 21-38.
45. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
46. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The quarterly journal of experimental psychology, 62(8), 1457-1506.
47. Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design. New York: McGraw-Hill.
48. Savelsbergh, G. J., Van der Kamp, J., Williams, A. M., & Ward, P. (2005). Anticipation and visual search behaviour in expert soccer goalkeepers. Ergonomics, 48(11-14), 1686-1697.
49. Schoonahd, J. W., Gould, J. D., & Miller, L. A. (1973). Studies of visual inspection. Ergonomics, 16(4), 365-379.
50. Scialfa, C. T., & Joffe, K. M. (1997). Age differences in feature and conjunction search: Implications for theories of visual search and generalized slowing. Aging, Neuropsychology, and Cognition, 4(3), 227-246.
51. Shen, J., Reingold, E. M., & Pomplun, M. (2000). Distractor ratio influences patterns of eye movements during visual search. Perception, 29(2), 241-250.
52. Shen, J., Reingold, E. M., & Pomplun, M. (2003). Guidance of eye movements during conjunctive visual search: the distractor-ratio effect. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 57(2), 76.
53. Simonin, J., Kieffer, S., & Carbonell, N. (2005, September). Effects of display layout on gaze activity during visual search. In IFIP Conference on Human-Computer Interaction (pp. 1054-1057). Springer, Berlin, Heidelberg.
54. Sireteanu, R., & Rettenbach, R. (1995). Perceptual learning in visual search: Fast, enduring, but non-specific. Vision research, 35(14), 2037-2043.
55. Sireteanu, R., & Rettenbach, R. (2000). Perceptual learning in visual search generalizes over tasks, locations, and eyes. Vision Research, 40(21), 2925-2949.
56. Swensson, R. G. (1980). A two-stage detection model applied to skilled visual search by radiologists. Perception & Psychophysics, 27(1), 11-16.
57. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97-136.
58. Wang, M. J. J., Lin, S. C., & Drury, C. G. (1997). Training for strategy in visual search. International Journal of Industrial Ergonomics, 20(2), 101-108.
59. Wickens, C. D., Gordon, S. E., Liu, Y., & Lee, J. (1998). An introduction to human factors engineering.
60. Williams, A. M., & Elliott, D. (1999). Anxiety, expertise, and visual search strategy in karate. Journal of Sport and Exercise Psychology, 21(4), 362-375.
61. Williams, L. G. (1966). The effect of target specification on objects fixated during visual search. Perception & Psychophysics, 1(5), 315-318.
62. Wodsworth, R. H. (1983). Basics of audio and visual systems design. Washington, DC: National Audio-visual Association.
63. Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic bulletin & review, 1(2), 202-238.
64. Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 483.