簡易檢索 / 詳目顯示

研究生: 鄭傑仁
Jie-Ren Zheng
論文名稱: 由共振腔內部電磁場特性推算腔體材料的機械性質
Using Electromagnetic Characteristics of Radio Frequency Cavity to Obtain the Mechanical Properties of the Cavity
指導教授: 葉孟考
Meng-Kao Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 69
中文關鍵詞: 共振腔頻率飄移
外文關鍵詞: cavity, frequency drift
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同步輻射光的提供過程中,提供高加速電壓梯度的共振腔體由於冷卻效應與壓差變化,造成結構變形,而改變腔內電磁場共振模態,導致頻率飄移,造成同步輻射光源品質的下降。本文以套裝軟體ANSYS作結合場域的分析,首先探討1.5GHz 圓柱盒型(pill-box)共振腔,因為溫度與壓力使其結構發生變形後,內部電磁場特性:加速電場、橫向磁場及工作頻率飄移現象。結果顯示,共振腔體開口太大會造成不規則電場使工作基頻飄移;而加長兩端延伸管可穩定加速電場;共振腔體中心長度延長可增加結構變形,但在一定範圍內,腔體共振基頻並無明顯改變;在4.2K超低溫時,因冷卻效應,使共振腔的工作頻率飄移達3MHz,但仍在允許範圍內。
    其次,利用結構形狀單純的圓柱狀共振腔體模型,在不同溫度環境下,施予不同的外加負載,藉由其電磁場共振頻率的變化,反推出其材料的機械性質;採用與上述相同的分析流程,對共振腔體在特定溫度下,分析不同材質以及不同厚度的腔體在抽真空過程中,內部電磁場共振頻率變化,得知內部電磁場頻率飄移量與壓差、熱收縮量呈正比,與楊氏係數、浦松比、腔體厚度成反比;利用此分析結果建立頻率飄移量(可實際量測的物理量)與材料性質、腔體尺寸之間的數學關係式,並實際量测鋁合金共振腔體(室溫


    In order to supply synchrotron radiation of higher quality, a storage ring with a high frequency resonant cavity is necessary to accelerate the electron beam. In operating environment, the pressure and temperature difference may cause structural deformation in the cavity, which results in the instability of interior electron beam, the working frequency fluctuation and the degradation of light source quality. In this paper, the interior electromagnetic characteristics of a 1.5GHz pill-box resonant cavity is obtained using the ANSYS code by combining the structural and electromagnetic analyses. The results showed that the resonant frequency would fluctuate more severely for a cavity with bigger aperture and shorter wave-guide’s length. Under the condition of thermal contraction from room temperature to liquid Helium temperature and 1atm external pressure, the pill-box cavity would produce a tolerable 3MHz of frequency fluctuation.
    The cryogenic characteristics of material properties were found based on the frequency drift in different environment temperature and loading. By the parametric study, the results show that the frequency increases for larger thermal contraction and external pressure; however, the frequency decreases for increasing Young’s modulus, Poison’s ratio and cavity thickness. Finally, the cryogenic material properties of an aluminum cavity were obtained by combing the above numerical procedure and experiment to measure the frequency drift for verification.

    摘要……………………………………………………………i 誌謝……………………………………………………………iii 目錄……………………………………………………………iv 圖表目錄………………………………………………………vi 第一章 簡介……………………………..……………………1 1.1 研究動機………………………...…………....1 1.2 文獻回顧………………………...…………....2 1.3 研究主題…………………………..……….....5 第二章 理論分析……………………………………………...7 2.1 電磁場理論分析……………………………...7 第三章 有限單元模擬分析……………..……………………10 3.1 模型建立與單元選取……………..…………10 3.1.1 單元選取…………..………………...…...11 3.1.2 有限單元網格之建立…..…..……………11 3.1.3 邊界條件設定……………....………….…12 3.2 有限單元分析…………..……………………12 3.2.1 共振腔結構有限單元分析………………12 3.2.2 腔體內部電磁場有限單元分析…………14 第四章 實驗程序……………………………………………17 4.1 實驗設備……..………………………………17 4.1.1 拉壓試驗機及訊號收集系統……………17 4.1.2電磁場共振頻率量測系統………….……17 4.2 材料常數量測………………………………18 4.3 試件尺寸……………………………………18 4.4 內部電磁場共振頻率量測實驗……………19 第五章 結果與討論…………………………………………21 5.1 改變腔體孔徑大小與延伸管長…………….21 5.1.1孔徑大小…………………………………21 5.1.2 延伸管長度……………………………...22 5.2耦合場域分析……………………..…………22 5.2.1內部單元的楊氏模數收斂分析…………22 5.2.2中心腔體長度對共振頻率之關係………23 5.2.3壓力與冷卻效應對共振頻率的影響……23 5.3 圓柱狀共振腔體的耦合場域分析…………24 5.3.1腔體壓差與介電常數改變之影響……...24 5.3.2腔體熱收縮量改變之影響……………...25 5.3.3腔體楊氏模數改變之影響……………...25 5.3.4腔體浦松比改變之影響…………………26 5.3.5腔體厚度改變之影響……………………26 5.4 頻率飄移量與參數的關係式………………27 5.4.1公式推導與驗證…………………………28 5.4.2實驗數據配合反推法估算材料常數……31 5.5 參數研究……………………………………33 5.5.1影響頻率飄移的關鍵參數………………33 5.5.2不同溫度對熱應變量與頻率飄移量的影響.34 5.5.3不同溫度對楊氏係數與頻率飄移量的影響.35 5.5.4不同溫度對頻率飄移量的影響……………36 第六章 結論……………………………………………………37 參考文獻………………………………………………………38 圖表……………………………………………………………41 附錄……………………………………………………………68

    參考文獻
    1. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
    2. H. Padamsee, “The Science and Technology of Superconductuing Cavity for Accelerators,” Superconducting Science and Technology, Vol. 14, pp. 28-51, 2001.
    3. M. G. Rao and P. Kneisel, “Thermal and Mechanical Properties of Electron Beam Welded and Heated-Treated Niobium for Tesla,” Continuous Electron Beam Accelerator Facility Newport News﹐pp. 1-7, 1993.
    4. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K. M. Schirm, M. Taufer and W. Weingarten, “Analysis and Result of The Industrial Production of The Superconducting Nb/Cu Cavities for The LEP 2 Project,” Proceedings of The Particle Accelerator Conference, Dallas, Vol. 3, pp.1509-1511, 1995.
    5. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasibity Study of Nb/Cu Clad Sperconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
    6. Y. C. Tsai, “Studies of High Order Mode Suppression in Storage Ring RF Cavity,” Ph.D. Dissertation, National Tsing Hua University, 1997.
    7. 戴英俠, “開口式共振腔場能頻譜特性探討,” 國立清華大學碩士論文, 1998.
    8. 陳家逸,”高頻共振腔高次模抑制方法之研究,” 國立清華大學碩士論文, 2003.
    9. 林保安, “開口式共振腔之特性探討,” 國立清華大學碩士論文, 1999.
    10. 鍾明忠, ”共振腔結構受端面位移影響之模態分析與實驗,” 國立清華大學碩士論文, 2004.
    11. 陳伯毅, ”低溫超導共振腔之挫曲及變形分析與實驗,” 國立清華大學碩士論文, 2003.
    12. A. Lwabuchi, T. Shimize, Y. Yoshino, T. Abe, K. Katagiri, I. Nitta and K. Sadamori, “The Development of A Vickers-Type Hardness Tester for Cryogenic Temperatures down to 4.2 K, “Cryogenics, Vol. 36, No. 2, pp. 75-81, 1996.
    13. N. Suzuki, T. Uchida and K. Suzuki, “Test Method and Strength Characteristics of Alumina Ceramics at Cryogenic Temperature,” Cryogenics, Vol. 38, No. 4, pp. 363-366, 1998.
    14. Y. Yamaguchi, K. Horiguchi, Y. Shindo, D. Sekiya and S. Kumagai, “Fracture and Deformation Properties of Ni-Fe Superalloy in Cryogenic High Magnetic Field Environments,” Cryogenics, Vol. 43, pp. 469-475, 2003.
    15. S. Ochiai, S. Nishino and K. Osamura, “Nb3Sn Tensile Strength and its Distribution Estimated from Change in Superconducting Critical Current of Preloaded Multifilamentary Composite Wire,” Cryogenics , Vol. 35, No. 1, pp. 55-60, 1995.
    16. A. Nyilas, K. Osumera, and M. Sugano, “Mechanical and Physical Properties of Bi-233 and Nb3Sn Superconducting Materials Between 300K and 7K,” Superconducting Science and Technology, Vol. 16, pp. 36-42, 2003.
    17. S. Awaji, K. Watanabe and K. Katagiri , “Improvement of Mechanical and Superconducting Properties in CuNb/(Nb,Ti)3Sn Wires by Applying Bending Strain at Room Temperature,” Superconductor Science and Technology, Vol. 16, pp. 733-738, 2003.
    18. K. Mukugi, N. Ouchi, JAREI and Y. Morimoto, “Low Temperature Mechanical Properties of Titanium and Weld Joints(Ti/Ti,Ti/Nb) for Helium Vessels, ” SRF 2001 Proceeding﹐PT008, 2001.
    19. K. Ishio, K. Kikuchi, M. Mizumoto and A. Naito, “Fracture Toughness and Mechanical Properties of Pure Niobium and its Welded Jionts of Superconducting Cavity at 4K,” 9th Workshop on RF Superconductivity 1999.
    20. R. P. Walsh, R. R. Mitchell,V. T. Toplosky and R. C. GentZlinger, “Low Temperature Tensile and Fracture Toughness Properties of SCRF Cavity Structural Materials,” 9 th Workshop on RF- Superconductivity 1999.
    21. D. C. Vander, W. Park and M. R. Hilton, “Characterization of Cryogenic Mechanical Properties of Aluminum-Lithium Alloy C-458,” Scripta Materialia, Vol. 41,No. 11, pp. 1185-1190, 1999.
    22. C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
    23. M. G. Rao and P. Kneisel, “Mechanical Properties of High RRR Niobium at Cryogenic Temperature,” Advances in Cryogenic Engineerings, Vol. 40, pp.1383-1390, 1994.
    24. B. Stephan, “Supplement of Worksheets and Useful Datas, ”Short course in cryogenics at SRRC﹐A-6.1-6.3, 1999.
    25. M. F. Thomas, “Cryogenic Engineering,” Marcel Dekker Inc﹐pp. 181-214, 1997.
    26. S. Belomestnykh, “Caculations of The Frequency Shift due to B-Cell Cavity Shape Deformation,” Report of SRF-940330-02, Cornell University, Ithaca, NY, 1994.
    27. J. Kirchgessner and S. Belomestnykh, “On The Pressure Compensation for The B-Cell Cavity in The MARK II Cryostat,” Report of SRF-970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997.
    28. J. Kirchgessner, “Thoughts on The Very High Value of dF/dP or Pressure Sensitivity of The B Cell Cavity in The MTM Cryostat,” Report of SRF-940321-01, Laboratory of Nuclear Studies, Cornell University, 1994.
    29. 高福聲, ”低溫超導共振腔之結構變形對內建電磁場特性之探討,” 國立清華大學碩士論文, pp. 1-35, 2002.
    30. M. C. Lin, Ch. Wang, L. H. Chang and G. H. Luo, “Effect of Material Properties on Resonance Frequency of CESR-ΙΙΙ Type 500 Mhz SRF Cavity, ” Proceedings of the 2001 Particle Acceleration Conference﹐ pp. 1371-1374, 2004.
    31. M. C. Lin, Ch. Wang, L. H. Chang, G. H Luo, F. S. Gao, M. K. Yeh and M. J. Huang, “A Coupled-Field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cavity,” Proceedings of EPAC 2002, Paris, France, pp. 2259-2261, 2002.
    32. D. K. Cheng, “ Field and Wave Electromagnetic,” Addison Wesley, New York, 1989.
    33. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
    34. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997
    35. J. Jin, “The Finite Element Method in Eletromagnetics,” Wiley-Interscience, New York,1993.
    36. ASTM B557-81, “Standard Test Method for Tension Test of Metallic Material,” Annual Book of ASTM Standards, Section 2, Vol. 02.02., pp.561-567.
    37. A. C. Ugural and S. K. Fenster, “Advanced Strength and Applied Elasticity,” Fourth Edition, pp. 314-335, 2003.
    38. 許世壁, “非線性聯立方程式數值方法,” 中央圖書出版社, 1988.
    39. R. L. Branham, “Scientific Data Analysis: An Introduction to Overdetermined Systems,” Springer-Verlag, New York, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE