研究生: |
陳郁文 Chen, Yu-Wen |
---|---|
論文名稱: |
以改良式遞迴傅立葉演算法設計遠場無光罩微影技術圖形之研究與應用 Study and Application of Maskless Lithographic Patterns in Optical Far Field Using Modified Iterative Fourier Transform Algorithm |
指導教授: |
王立康
徐巍峰 |
口試委員: |
王立康
徐巍峰 楊士禮 蘇威佳 謝美莉 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 繞射光學元件 、相位移圖形 、遞迴傅立葉演算法 、相位移微影技術 、無光罩微影技術 |
外文關鍵詞: | Diffractive optical element, Phase-shift pattern, IFTA, Phase-shift lithography, Maskless lithography |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出利用全像投影系統(Holographic projection system, HPS)在光學遠場產生二階相位移圖形(Phase-shift patterns, PSPs)並可實際應用在非週期性結構的元件製造方法上。將設定好的遠場相位移圖形當作是目標圖形,以此目標圖形結合改良式遞迴傅立業演算法,返回計算純相位式繞射元件的最佳化場函數。將計算出來的純相位式繞射元件場函數輸入至全像投影系統中的空間光調變器(Spatial light modulator, SLM),可於系統設定的遠場投影面上得到近似的相位移圖形;遠場相位移圖形與空間光調變器上彼此間的光場形式為傅立業轉換的平方正比關係。從實驗的結果來看,我們所提出的設計方法確實建立了一種新穎且實際可行的作法,這樣的設計方法與相位移微影技術(Phase-shift lithography, PSL)的結合對於達成更小的臨界尺寸(Critical dimension)具有無限潛力,並且可實現快速且低成本的無光罩微影技術(Maskless lithography, ML)。
We propose a method to generate two-dimensional phase-shift patterns (PSPs) in the optical far field using a holographic projection system (HPS), which can be used to fabricate non-periodic features. The field function of PSP is used as the target function to calculate the phase-only diffractive optical element by applying an optimization of modified iterative Fourier transform algorithm (IFTA). Using the phase-only diffractive optical element as the input to the spatial light modulator (SLM) of holographic projection system, an image resembling the PSP target is obtained in the projection plane. In contrast to the PSPs, which are the images of the input to the SLM, the PSPs of the proposed method are proportional to the squared modulus of the Fourier transform of the light field from the input SLM. The results of the proposed approach can lead to the development of a novel approach that combines the promising properties of the small critical dimension achieved by the phase-shift lithography (PSL) and the high velocity and low cost of the maskless lithography (ML).
[1]H. Aagedal, F. Wyrowski, and M. Schmid, “Paraxial beam splitting and shaping,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen and F. Wyrowski, ed. (Akademie Verlag, Berlin, 1997), pp. 165-188.
[2]J. N. Mait, “Diffractive beauty,” Opt. & Photonics News 9, 21-25 & p.52, November 1998
[3]O. Bryndahl and F. Wyrowski, “Digital computer generated holograms,” Prog. Opt. 28, 1-86 (1990)
[4]A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739- (1967)
[5]Donald C. O'Shea ... [et al.], Diffractive optics: design, fabrication, and test, Bellingham, Wash., SPIE Press, c2004.
[6]M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices ED-29, 1828-1836 (1982).
[7]M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33 (Part 1, No. 12B), 6765-6773 (1994).
[8]Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438-2452 (1994).
[9]H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2-14 (1998).
[10]G. A. Cirino, R. D. Mansano, P. Verdonck, L. Cescato, and L. G. Neto, “Diffractive phase-shift lithography photomask operating in proximity printing mode,” Opt. Express. 18, 16387-16405 (2010).
[11]J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658-2660 (1997).
[12]J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145-2152 (1998).
[13]Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431-2433 (2001).
[14]J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochemistry Photobiology A: Chemistry 166, 149-154 (2004).
[15]徐祥佑,繞射光學元件應用於遠場繞射式微影技術之評估與研究,國立台灣大學機械工程學研究所碩士論文 (2005)
[16]Michael Quirk and Julian Serda, “Semiconductor Manufacturing Technology,” (2001), pp. 355-471.
[17]J. B. Sampsell and I. Texas Instruments, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12, 3242-3246 (1994).
[18]S. Singh-Gasson, R. D. Green, C. N. Yongjian Yuel, F. Blattner, and M. R. S. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nature Biotechnology 17, 974-978 (1999).
[19]N. Choksi, D. S. Pickard, M. Mccord, R. F. W. Pease., Y. Shroff, Y. Chen, W. Oldham., and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 6, 3047-3051 (1999).
[20]W. G. Oldham and Y. Shroff, “Mirror-based pattern generation for maskless lithography,” Microelectronic Engineering 73-74, 42-47 (2004).
[21]A. Bertsch, J. Y. Jezequel, and J. C. Andre, “Study of the spatial resolution of new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” Journal of Photochemistry and Photobiology A: Chemistry 107, 275-281 (1997).
[22]T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324-329 (2000).
[23]T. Horiuchi, S. Aichi, and Y. Kawamura, “New projection exposure using a double-line matrix of optical fibers in place of a reticle,” Jpn. J. Appl. Phys. 42, 1820-1827 (2003).
[24]T. Horiuchi, and H. Kobayashi, “Improved projection matrix-exposure using a liquid crystal display panel for printing smooth arbitrary patterns without reticles,” Microelectronic Engineering 73-74, 48-52 (2004).
[25]W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.
[26]W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
[27]W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
[28]C. Bay, N. Hubner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35, 2230-2232 (2010).
[29]Joseph W. Goodman, Introduction to Fourier Optics, (2nd ed.) MacGraw-Hill, New York, 1996.
[30]B. Kress and P. Meyrueis, Digital Diffractive Optics, John Wiley & Sons, England, 2001.
[31]A. W. Lohmann and D. Paris: Binary Fraunhofer holograms, generated by computer, Appl. Opt., 6(10), 1739-1748 (1967)
[32]B. R. Brown and A. W. Lohmann, Computer-generated binary holograms, IBM J. Res. and Dev., 13, 160-168 (1969)
[33]P. F. McKee et al.: New applications of optics from modern computer design methods, British Telecom Technol. J., 11, 2159-2169 (1993)
[34]J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin, 1997.
[35]J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773-3775 (1997).
[36]M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237-250 (2003).
[37]M. Klosner and K. Jaina, "Massively parallel, large-area maskless lithography," Appl. Phys. Lett. 84, 2880-2882 (2004).
[38]C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: Pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[39]M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950-1953 (2008)
[40]F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A7, 961-969 (1990).
[41]H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt. 25, 802-811 (1986).
[42]W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
[43]蘇元宏,以繞射光學元件產生遠場相位移圖形之研究,國立台北科技大學光電工程研究所碩士論文 (2006)
[44]H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 75-2579 (2005).
[45]K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196 -16209 (2007).
[46]C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng and M. F. Tsai “Point spread function of a collinear holographic storage system,” Optics Express 26, 18111-18118 (2007).
[47]Y.W. Yu, C.Y. Chen, and C.C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130-1132 (2010).
[48]T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function.” Opt. Lett. 31, 1208-1210 (2006)
[49]Y.W. Yu, T.C. Teng, S.C. Hsieh, C.Y. Cheng and C.C. Sun, “Shifting Selectivity of Collinear Volume Holographic Storage,” Opt. Commun. 283, 3895-3900 (2010).
[50]W. C. Su, Y. W. Chen, Y. J. Chen, S. H. Lin, and L. K. Wang, “Security optical data storage in Fourier holograms,” Appl. Opt. 51, 1297-1303 (2012).
[51]J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012-6015 (1995).
[52]C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[53]C. Denz, K-O Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142-147 (1999).
[54]O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T. Yoshimura, “Reflection-type holographic disk memory with random phase shift multiplexing,” Appl. Opt. 45, 3270–3274 (2006).
[55]W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, " Duplication of phase key for random-phase-encrypted volume holograms,” Applied Optics. 43, 1728-1733 (2004).
[56]F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” JOSA A 7, 961-969 (1990)
[57]W.F. Hsu, Y.W. Chen, and Y.H. Su, “Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements,” Appl. Opt. 50, 3646-3652 (2011)