研究生: |
高金福 Kao, Chin-Fu |
---|---|
論文名稱: |
相變化記憶元件之材料開發與探索 Material exlorations for applications in phase-change memory |
指導教授: |
金重勳
Chin, Tsung-Shune |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 相變化記憶體 、相變化材料 、鎵鍗銻合金 、共晶型合金 、單元素鍺記憶體 |
外文關鍵詞: | phase-change memory, phase-change materials, Ga-Te-Sb alloys, Eutectic alloys, single element Ge memory |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對記憶體應用設計,進行新穎性材料之探索,其中包含新興的相變化材料鎵銻鍗合金的元件、鍺基合金的共晶型記憶體和單元素之記憶型轉態之奈米線元件研究。
第一議題係針對特徵化之鎵鍗銻合金進行記憶元件的電性測試,並和傳統材料鍺銻鍗(參考元件)作一個相比較,然而鎵鍗銻元件在低耗能、高速操作與熱穩定特性上,均有相當亮眼的表現。由於鎵鍗銻合金具備較高的結晶溫度(攝氏228到276度,依組成而變)和結晶活化能(約略4.3到5.8電子伏特,數值從等溫實驗中取得),因此擁有相當好的熱穩定性質。在資料保存特性上,組成Ga3TeSb8可在攝氏210度的條件下保存資訊長達10年以上,而在車用電子的規格溫度攝氏120度下,可保存遠超過一百萬年以上的時間,其極佳的熱穩定甚至可以在攝氏100度的環境下,循環操作超過30萬次,在一般室溫的條件下,則可操作可達三百萬次以上。
在高速操作的速度表現上,組成Ga2Te3Sb5, Ga3Te2Sb12 and G a3TeSb8的鎵鍗銻元件,已被驗證可在20 奈秒的電壓脈衝內完成寫入/擦拭的動作,然而其中僅有組成G a3TeSb8屬於成長為主的結晶機制。鎵鍗銻元件所需的操作電流均小於參考元件,其中組成Ga3Te2Sb12有效降低電流達34 %,此項結果亦由DTA的熱分析得到合理解釋。除次之外,組成Ga2Te3Sb5也展示了在單一記憶元件進行三階段電阻改變的特性,驗證三進位記憶元件的可行性。
第二議題則探討一個新的記憶體材料,利用IC半導體產業完全相容的元素,鍺基合金,這邊以鍺銅和鍺鋁合金來闡釋並製做記憶元件,用來證實這新式記憶體技術。在結晶機制方面,鍺鋁合金具有成長為主的結晶行為,而鍺銅是屬於成核為主,其中成核/成長的比例隨銅含量而成線性關係,表示銅元素在鍺基材中扮演著異質成核的角色。在元件方面,兩組合金均可在短脈衝下完成寫入/擦寫的動作,其中鍺鋁銅元件更可以在5奈秒內完成。雖然操作電流比參考元件要高50%,但是其他在循環操作和熱穩定的表現均有相當不錯的進展。由於鍺基合金的結晶溫度較高(依組成而變,約略超於300度),因此具備有極佳的熱穩定表現,其中在室溫操作下,可以超過1000萬次以上的循環擦寫,更可在攝氏160度的環境上操作超過300萬次。
第三議題則更進一步探索單一元素記憶體應用的可能性。利用氣固合成法在合金顆粒表面上,直接成長異質結構之核殼奈米線,並利用TEM和SEM來觀察表面形貌和內部微結構。核殼奈米線的內部為一條直徑約20到40奈米的鍺核,外圍則是以氧化鋁外殼包覆著。相變化記憶體的材料開發以單一元素作為最終的目標,以避免相分離的自然現象。利用鉑金屬線連接核殼奈米線和金電極,製備的奈米線元件表現出電阻改變的記憶特性,其電阻表現出10倍以上的改變,最大的操作電流小於0.1毫安培,並約在施加電壓4.5和14伏特時,顯示出SET和RESET的特性,並可以連續穩定操作超過30次以上。
Disclosed in this dissertation are the exploration of new materials and test-cells prepared thereof for applications in phase-change memory (PCM). We worked out novel Ga-Te-Sb alloys for highly thermal stable PCM, and Ge-based materials for a brand-new ‘eutectic memory’. Single element PCM, being the ultimate pursuit, is also exemplified in Ge-core of core-shelled Ge-AlOx nanowires.
The memory devices made of new Ga-Te-Sb compositions, Ga2Te3Sb5, Ga3Te2Sb12 and Ga3TeSb8, exhibit outstanding performances, such as lower power consumption, high speed operation (20 ns) and extreme thermal stability, as compared to our reference cells made of Ge2Sb2Te5 (GST225). The Ga-Te-Sb thin films with a high crystallization temperatures (Tx, 228-276 oC) and enhanced activation energy of crystallization (Ec, 4.3-5.76 eV evaluated by isothermal method), present outstanding thermal stability. The data-retention temperature for ten-year archival lifetime of Ga3TeSb8 films (Tx= 276 oC, Ec= 5.76 eV) reaches record high 210 oC. Ga3TeSb8 devices exhibit endurance more than 5x106 cycles at room temperature (RT), and can be normal-operative at 100 oC for more than 3x105 cycles. A lowest programming current is achieved in Ga3Te2Sb12 devices, showing 34% lower than those of GST225. Besides, the Ga2Te3Sb5 test-cells also demonstrate a capability of three-level resistance changes in a single memory unit. This makes possible a three-level per cell memory to facilitate higher memory capacity.
Ge-based materials was proposed and exemplified by test-cells made of Ge-Cu and Ge-Al alloys which are fully compatible with IC processing. Crystallization mechanism of Ge-Al and Ge-Cu films belongs to highly growth-dominated (GD) and nucleation-dominated (ND) regime, respectively. The ND/GD ratio of Ge-Cu alloys is linear versus Cu content. Devices made of a Ge-Al-Cu alloy can be SET/RESET within a short pulse-width 5 ns. Although the set-reset currents of Ge-based testing-cells are 50 % higher than that of Ge2Sb2Te5 cells, the thermal stability and endurance results are much better. The endurance result of Ge-Al devices is greater than 107 cycles at RT, even though intrinsic phase separation Ge-Cu and Ge-Al alloys are observed. Due to their high Tx (~300 oC) and high Ec, Ge-Al devices display an endurance of 3x106 cycles operative at 160 oC.
We synthesized core-shelled Ge-AlOx nanowires (NWs) through vapor-solid process without any catalysts. Ge-AlOx NWs comprise a core of Ge-phase with a diameter 20-40 nm. We verified, using Ge-AlOx devices prepared by focus-ion-beam, reproducible electrical switching characteristic of phase-change mechanism. Repeated operations are possible with programming DC current less than 0.1 mA, at applied voltages 4.5 V for SET and 14 V for RESET and at least 30 cycles when tests stopped.
REFERENCES
1.Tehrani, S., et al., Progress and outlook for MRAM technology. IEEE TRANSACTIONS ON MAGNETICS, 1999. 35(5): pp. 2814-2819.
2.Kato, Y., et al., Overview and future challenge of ferroelectric random access memory technologies. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007. 46(4B): pp. 2157-2163.
3.Lai, S. and T. Lowrey. OUM-A 180 nm Non-Volatile Memory Cell Element Technology For Stand Alone and Embedded Applications. 2001: IEEE; 1998.
4.Ling, Q., et al., Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Advanced Materials, 2005. 17(4): pp. 455-458.
5.Zhuang, W., et al. Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). 2002.
6.Parkin, S.S.P., M. Hayashi, and L. Thomas, Magnetic domain-wall racetrack memory. Science, 2008. 320(5873): pp. 190-194.
7.Hayashi, M., et al., Current-controlled magnetic domain-wall nanowire shift register. Science, 2008. 320(5873): pp. 209-211.
8.Available from: http://pouyakondori.blogspot.com/2008/08/mram-fastest-ram-till-now.html
9.Available from: http://thefutureofthings.com/articles/36/mram-the-birth-of-the-super-memory.html
10.Available from: www.almaden.ibm.com
11.Derbenwick, G., et al. Advances in FeRAM Technologies. 2000.
12.Mikolajick, T., et al., FeRAM technology for high density applications. Microelectronics Reliability, 2001. 41(7): pp. 947-950.
13.Guo, X. and C. Schindler, Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 2007. 91(13).
14.Rana, D.S., et al., Understanding the Nature of Ultrafast Polarization Dynamics of Ferroelectric Memory in the Multiferroic BiFeO3. Advanced Materials, 2009. 21(28): pp. 2881-2885.
15.Available from: http://techon.nikkeibp.co.jp/english/img2/nea_0208compo-2fig.gif
16.Available from: http://www.3dnews.rutagsferam
17.Ouyang, J., et al., Programmable polymer thin film and non-volatile memory device. Polymer, 2004. 1: p. A1.
18.Yang, Y., et al., Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials, 2006. 16(8): pp. 1001-1014.
19.Available from: http://www.engineer.ucla.edu/magazine/images/polymem.jpg
20.Ovshinsky, S., Reversible electrical switching phenomena in disordered structures. Physical Review Letters, 1968. 21(20): pp. 1450-1453.
21.Available from: http://en.wikipedia.org/wiki/Chalcogenide
22.Gill, M., T. Lowrey, and J. Park. Ovonic unified memory—a high-performance nonvolatile memory technology for stand-alone memory and embedded applications. 2002.
23.Maimon, J., et al. Chalcogenide-based non-volatile memory technology. in IEEE Aerospace Conference. 2001.
24.Yamada, N., et al., Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. Journal of Applied Physics, 1991. 69(5): p. 2849.
25.Pohlmann, K., The compact disc handbook. 1992: Oxford University Press US.
26.Cope, J., The physics of the compact disc. Physics Education, 1993. 28: pp. 15-21.
27.Kolobov, A.V., et al., Understanding the phase-change mechanism of rewritable optical media. Nature Materials, 2004. 3(10): pp. 703-708.
28.Gao, X., et al., Design and construction of a static tester for blue ray optical storage. Optik-International Journal for Light and Electron Optics, 2006. 117(8): pp. 355-362.
29.Kobota, T. HD DVD-overview of next generation optical disc format. 2004.
30.Krauss, P. and S. Chou, Nano-compact disks with 400 Gbit/in storage density fabricated using nanoimprint lithography and read with proximal probe. Applied Physics Letters, 1997. 71: pp. 3174.
31.Servalli, G., A 45nm Generation Phase Change Memory Technology. International Electron Devices Meeting, 2009.
32.Wuttig, M. and N. Yamada, Phase-change materials for rewriteable data storage. Nature Materials, 2007. 6(11): pp. 824-832.
33.Hegedus, J. and S.R. Elliott, Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nature Materials, 2008. 7(5): pp. 399-405.
34.Friedrich, I., et al., Morphology and structure of laser-modified Ge2Sb2Te5 films studied by transmission electron microscopy. Thin Solid Films, 2001. 389(1-2): pp. 239-244.
35.Yang, J.J., et al., Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 2008. 3(7): pp. 429-433.
36.Hosoi, Y., et al. High speed unipolar switching resistance RAM (RRAM) technology. 2006.
37.Tsunoda, K., et al., Bipolar resistive switching in polycrystalline TiO2 films. Applied Physics Letters, 2007. 90(11).
38.Shima, H., et al., Substantial Reduction of Reset Current in CoO RRAM with Ta Bottom Electrode.
39.Lin, M.H., et al., Nonpolar Bistable Resistive Switching Behaviors of Bismuth Titanate Oxide Thin Film. Ferroelectrics, 2009. 380: pp. 30-37.
40.Wang, Y., et al., Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010. 21(4).
41.Available from: http://www.imec.be/ScientificReport/SR2008/HTML/1224958.html
42.Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nature Materials, 2007. 6(11): pp. 833-840.
43.Xu, N., et al. A unified physical model of switching behavior in oxide-based RRAM. 2008.
44.Symanczyk, R., et al., Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells. IEEE Electron Device Letters, 2009. 30(8): pp. 876-878.
45.Russo, U., et al., Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory. IEEE Transactions on Electron Devices, 2009. 56(5): pp. 1040-1047.
46.Kovtyukhova, N.I. and T.E. Mallouk, Nanowires as building blocks for self-assembling logic and memory circuits. Chemistry-a European Journal, 2002. 8(19): pp. 4355-4363.
47.Li, Y.B., A. Sinitskii, and J.M. Tour, Electronic two-terminal bistable graphitic memories. Nature Materials, 2008. 7(12): pp. 966-971.
48.Rueckes, T., et al., Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 2000. 289(5476): p. 94.
49.Chen, Y.C., et al., Ultra-Thin Phase-Change Bridge Memory Device Using GeSb. International Electron Devices Meeting, 2006.
50.Available from: http://en.wikipedia.org/wiki/Phase_change_memory
51.Available from: http://iknow.stpi.org.tw/Post/Read.aspx?PostID=3253
52.Nakayama, K., et al., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses. Jpn. J. Appl. Phys., Part 1, 2000. 39(11): pp. 6157-6161.
53.Qiao, B.W., et al., Phase-change memory device using Si-Sb-Te film for low power operation and multibit storage. Journal of Electronic Materials, 2007. 36(1): pp. 88-91.
54.Zhang, T., et al., Comparison of the crystallization of Ge-Sb-Te and Si-Sb-Te in a constant-temperature annealing process. Scripta Materialia, 2008. 58(11): pp. 977-980.
55.Zhang, T., et al. O-Doped Si2Sb2Te5 Nano-Composite Phase Change Material for Application of Chalcogenide Random Access Memory. Journal of Nanoscience and Nanotechnology, 2009. 9(2): pp. 1090-1093.
56.Takase, A., et al., Crystal structure of oxygen/nitrogen-doped GeSbTe phase-change media: Investigation using grazing incidence X-ray diffraction. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002. 41(4A): pp. 2189-2190.
57.Kim, S.M., et al. Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory. 2004.
58.Privitera, S., E. Rimini, and R. Zonca, Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements. Applied Physics Letters, 2004. 85(15): pp. 3044-3046.
59.Horii, H., et al., A 0.24 mu m PRAM cell technology using N-doped GeSbTe films. Ieice Transactions on Electronics, 2004. E87C(10): pp. 1673-1678.
60.Lai, Y.F., et al., Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory. Journal of Electronic Materials, 2005. 34(2): pp. 176-181.
61.Yeung, F., et al., Ge2Sb2Te5 confined structures and integration of 64Mb phase-change random access memory. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(4B): pp. 2691-2695.
62.Cho, S., et al. Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb. 2005.
63.Chao, D.S., et al., Enhanced thermal efficiency in phase-change memory cell by double GST thermally confined structure. IEEE Electron Device Letters, 2007. 28(10): p. 871-873.
64.Im, D., et al., A Unified 7.5 nm Dash-Type Confined Cell for High Performance PRAM Device. International Electron Devices Meeting, 2009.
65.Lavizzari, S., et al., Structural relaxation in chalcogenide-based phase change memories (PCMs): from defect-annihilation kinetic to device-reliability prediction, in E*PCOS. 2008.
66.Burns, J.A., et al., A wafer-scale 3-D circuit integration technology. Ieee Transactions on Electron Devices, 2006. 53(10): pp. 2507-2516.
67.Im, J., et al., Atomic and electronic structures of amorphous GST, in E*PCOS. 2009.
68.Oh, J.H., et al., Full Integration of Highly Manufacturable 512Mb PRAM Based on 90nm Technology. International Electron Devices Meeting, 2006: pp. 1-4.
69.Raoux, S., et al., Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb. Journal of Applied Physics, 2007. 101(4): p. 6.
70.Jung, Y., et al., Phase-Change Ge-Sb Nanowires: Synthesis, Memory Switching, and Phase-Instability. Nano Letters, 2009. 9(5): pp. 2103-2108.
71.Cabral, C., et al., Direct evidence for abrupt postcrystallization germanium precipitation in thin phase-change films of Sb-15 at.% Ge. Applied Physics Letters, 2008. 93(7): p. 071906.
72.Karpov, I.V., et al., Evidence of field induced nucleation in phase change memory. Applied Physics Letters, 2008. 92(17).
73.Yoon, S., et al., Nanoscale observations of the operational failure for phase-change-type nonvolatile memory devices using Ge2Sb2Te5 chalcogenide thin films. Applied Surface Science, 2007. 254(1): pp. 316-320.
74.Hong, S.H. and H. Lee, Failure Analysis of Ge2Sb2Te5 Based Phase Change Memory. Japanese Journal of Applied Physics, 2008. 47(5): pp. 3372-3375.
75.Ryu, S.O., et al., Crystallization behavior and physical properties of Sb-excess Ge2Sb2+xTe5 thin films for phase change memory (PCM) devices. Journal of the Electrochemical Society, 2006. 153(3): pp. G234-G237.
76.Nam, S.W., et al., Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing. Applied Physics Letters, 2008. 92(11).
77.Bruns, G., et al., Nanosecond switching in GeTe phase change memory cells. Applied Physics Letters, 2009. 95(4): p. 3.
78.Bez, R. and F. Pellizzer. Progress and Perspective of Phase-Change Memory. in EPCOS. 2007.
79.Lacaita, A., Phase change memories: State-of-the-art, challenges and perspectives. Solid State Electronics, 2006. 50(1): pp. 24-31.
80.Ha, Y., et al. An edge contact type cell for phase change RAM featuring very low power consumption. in VLSI Technology, Digest of Technical Papers. 2003.
81.Ryoo, K.C., et al., Ring contact electrode process for high density phase change random access memory. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007. 46(4B): pp. 2001-2005.
82.Song, Y., et al. Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology. in VLSI Technology, Digest of Technical Papers. 2006.
83.Pellizzer, F., et al. Novel/spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications. in VLSI Technology, Digest of Technical Papers. 2004.
84.Yeung, F., et al., Ge2Sb2Te5 Confined structures and integration of 64Mb phase-change random access memory. Japanese Journal of Applied Physics, 2005. 44(4B): pp. 2691-2695.
85.Lyeo, H.K., et al., Thermal conductivity of phase-change material Ge2Sb2Te5. Applied Physics Letters, 2006. 89(15).
86.Reifenberg, J.P., et al., Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Applied Physics Letters, 2007. 91(11).
87.Chen, W.S., et al. A novel cross-spacer phase change memory with ultra-small lithography independent contact area. in International Electron Devices Meeting. 2007.
88.Castro, D.T., et al. Evidence of the Thermo-Electric Thomson Effect and Influence on the Program Conditions and Cell Optimization in Phase-Change Memory Cells. in International Electron Devices Meeting, 2007.
89.Lankhorst, M.H.R., B.W.S.M.M. Ketelaars, and R.A.M. Wolters, Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials, 2005. 4(4): pp. 347-352.
90.Raoux, S., et al., Influence of interfaces and doping on the crystallization temperature of Ge-Sb. Applied Physics Letters, 2009. 94(18): pp. 3.
91.Kang, D.H., et al., An experimental investigation on the switching reliability of a phase change memory device with an oxidized TiN electrode. Journal of Applied Physics, 2006. 100(5).
92.Matsui, Y., et al. Ta2O5 interfacial layer between GST and W plug enabling low power operation of phase change memories. in IEDM Tech.Dig. 2006.
93.Xu, C., et al., Lower current operation of phase change memory cell with a thin TiO2 layer. Applied Physics Letters, 2008. 92(6).
94.Lin, T.Y., et al., 5-nm-thick TaSiC amorphous films stable up to 750 degrees C as a diffusion barrier for copper metallization. Applied Physics Letters, 2007. 91(15): pp. 3.
95.Rao, F., et al., Phase change memory cell using tungsten trioxide bottom heating layer. Applied Physics Letters, 2008. 92(22): pp. 3.
96.Lee, S.Y., et al., Polycrystalline silicon-germanium heating layer for phase-change memory applications. Applied Physics Letters, 2006. 89(5).
97.Kim, C., et al., Fullerene thermal insulation for phase change memory. Applied Physics Letters, 2008. 92(1).
98.Yin, Y., H. Sone, and S. Hosaka, Finite element analysis of dependence of programming characteristics of phase-change memory on material properties of chalcogenides. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(11): pp. 8600-8603.
99.Guo, Q., et al., Crystallization-induced stress in thin phase change films of different thicknesses. Applied Physics Letters, 2008. 93(22).
100.Park, Y., et al. Stress Reduction of Ge2Sb2Te5 Crystallization by Capping Al2O3 Film Grown by PEALD. 2007: ECS.
101.Yang, T.Y., et al., Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field. Applied Physics Letters, 2009. 95(3): p. 3.
102.Meinders, E. and M. Lankhorst, Determination of the crystallisation kinetics of fast-growth phase-change materials for mark-formation prediction. Jpn. J. Appl. Phys., Part 1, 2003. 42(2): pp. 809-812.
103.Coombs, J.H., et al., Laser-induced crystallization phenomena in GeTe-based alloys .1. characterization of nucleation and growth. Journal of Applied Physics, 1995. 78(8): pp. 4906-4917.
104.Park, T.J., et al., Phase transition characteristics and nonvolatile memory device performance of ZnxSb100-x alloys. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007. 46(20-24): pp. L543-L545.
105.Zhang, T., et al., Investigation of environmental friendly Te-free SiSb material for applications of phase-change memory. Semiconductor Science and Technology, 2008. 23(5): p. 055010.
106.Lv, S.L., et al., High Speed and Ultra-Low-Power Phase Change Line Cell Memory Based on SiSb Thin Films with Nanoscale Gap of Electrodes Less Than 100 nm. Chinese Physics Letters, 2008. 25(11): pp. 4174-4176.
107.Zhang, T., et al., Advantages of SiSb phase-change material and its applications in phase-change memory. Applied Physics Letters, 2007. 91(22).
108.Rao, F., et al., Sn12Sb88 material for phase change memory. Applied Physics Letters, 2009. 95(3): pp. 032105.
109.Huang, S.M., et al., Investigation of phase changes in Ge1Sb4Te7 films by single ultra-fast laser pulses. Applied Physics a-Materials Science & Processing, 2006. 82(3): pp. 529-533.
110.Sun, H.J., et al., Reversible Resistance Switching Effect in Amorphous Ge1Sb4Te7 Thin Films without Phase Transformation. Chinese Physics Letters, 2009. 26(2).
111.Morikawa, T.K., K. Kinoshita, M. Matsuzaki, N. Matsui, Y. Fuiisaki, Y. Hanzawa, S. Kotabe, A. Terao, M. Moriya, H. Iwasaki, T. Matsuoka, M. Nitta, F. Moniwa, M. Koga, T. Takaura, N. , Doped In-Ge-Te Phase Change Memory Featuring Stable Operation and Good Data Retention. Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007: pp. 307-310.
112.Lee, S.H., et al., Comparative study of memory-switching phenomena in phase change GeTe and Ge2Sb2Te5 nanowire devices. Physica E-Low-Dimensional Systems & Nanostructures, 2008. 40(7): pp. 2474-2480.
113.Rao, F., et al., Phase change memory cell based on Sb2Te3/TiN/Ge2Sb2Te5 sandwich-structure. Solid-State Electronics, 2009. 53(3): pp. 276-278.
114.Kim, M., et al., Crystallization characteristics of nitrogen-doped Sb2Te3 films for PRAM application. Ceramics International, 2008. 34(4): pp. 1043-1046.
115.Avrami, M., Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III. Journal of Chemical Physics, 1941. 9(2): pp. 177-184.
116.Avrami, M., Kinetics of phase change I - General theory. Journal of Chemical Physics, 1939. 7(12): pp. 1103-1112.
117.Avrami, M., Kinetics of Phase Change. II Transformation Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics, 1940. 8: p. 212.
118.Kissinger, H.E., VARIATION OF PEAK TEMPERATURE WITH HEATING RATE IN DIFFERENTIAL THERMAL ANALYSIS. Journal of Research of the National Bureau of Standards, 1956. 57(4): pp. 217-221.
119.Lee, C.M., et al., Performances of phase-change recording disks based on GaSbTe media. IEEE Transactions on Magnetics, 2005. 42(2): p. 1022-1024.
120.Lee, C.M., Y.L. Lin, and T.S. Chin, Crystallization kinetics of amorphous Ga-Sb-Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry. Journal of Materials Research, 2004. 19(10): pp. 2929-2937.
121.Lee, C.M., Y.I. Lin, and T.S. Chin, Crystallization kinetics of amorphous Ga-Sb-Te films: Part II. Isothermal studies by a time-resolved optical transmission method. Journal of Materials Research, 2004. 19(10): pp. 2938-2946.
122.Cheng, H.Y., et al., Characteristics of Ga-Sb-Te films for phase-change memory. IEEE Transactions on Magnetics, 2007. 43(2): pp. 927-929.
123.Redaelli, A., et al. Impact of crystallization statistics on data retention for phase change memories. in IEDM Tech. Dig. 2005.
124.Scott, J.C., Is there an immortal memory? Science, 2004. 304(5667): pp. 62-63.
125.Liu, B., et al., Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory. Semiconductor Science and Technology, 2004. 19(6): pp. L61-L64.
126.Ielmini, D., et al., Analysis of phase distribution in phase-change nonvolatile memories. IEEE Electron Device Letters, 2004. 25(7): pp. 507-509.
127.Dimitrov, D. and H.P.D. Shieh, The influence of oxygen and nitrogen doping on GeSbTe phase-change optical recording media properties. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2004. 107(2): pp. 107-112.
128.Liu, B., et al., Effect of N-implantation on the structural and electrical characteristics of Ge2Sb2Te5 phase change film. Thin Solid Films, 2005. 478(1-2): pp. 49-55.
129.Zhang, Y., J. Feng, and B.C. Cai, Oxygen-doped Si15Sb85 thin film for good data retention and high speed phase-change memory application. Semiconductor Science and Technology, 2009. 24(4).
130.Cheng, X., et al. Simulation on A Novel Ga-doped Phase Change Memory for Next Generation Embedded Non-Volatile Memory Application. in Advanced Semiconductor Manufacturing Conference. 2008.
131.Yi, J.H., et al. Novel cell structure of PRAM with thin metal layer inserted GeSbTe. in IEDM Tech. Dig. 2003.
132.Shih, Y.H., et al. Mechanisms of Retention Loss in Ge2Sb2Te5-based Phase-Change Memory. in IEDM Tech. Dig. 2008.
133.Huang, Y.J., Y.C. Chen, and T.E. Hsieh, Phase transition behaviors of Mo- and nitrogen-doped Ge2Sb2Te5 thin films investigated by in situ electrical measurements. Journal of Applied Physics, 2009. 106(3): p. 7.
134.Feng, J., et al., Crystallization process and amorphous state stability of Si-Sb-Te films for phase change memory. Journal of Applied Physics, 2007. 101(7): p. 074502.
135.Jeong, C.W., et al., Highly reliable ring-type contact for high-density phase change memory. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(4B): pp. 3233-3237.
136.Zhou, G.F., B.A.J. Jacobs, and W. vanEsSpiekman, Laser-induced crystallization in Ge-Sb-Te optical recording materials. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1997. 226: pp. 1069-1073.
137.Wu, T.H., et al., GeCu thin films for inorganic write-once media. IEEE TRANSACTIONS ON MAGNETICS, 2007. 43(2): pp. 856-858.
138.Zhang, T., et al., Investigation of environmental friendly Te-free SiSb material for applications of phase-change memory. Semiconductor Science and Technology, 2008. 23(5).
139.Lee, S., et al., Demonstration of a Reliable High Speed Phase-Change Memory Using Ge-Doped SbTe. Journal of the Electrochemical Society, 2009. 156(7): pp. H612-H615.
140.Bruns, G., et al., Nanosecond switching in GeTe phase change memory cells. Applied Physics Letters, 2009. 95(4).
141.Sutter, E. and P. Sutter, Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Letters, 2008. 8(2): pp. 411-414.
142.Chen, H.J., et al., Silicon doping induced bending in aluminum nanowires. Applied Physics Letters, 2007. 90(2).
143.Hoch, M. and H.L. Johnston, Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO. Journal of the American Chemical Society, 1954. 76(9): pp. 2560-2561.
144.Peng, X.S., et al., Photoluminescence and infrared properties of alpha-Al2O3 nanowires and nanobelts. Journal of Physical Chemistry B, 2002. 106(43): pp. 11163-11167.
145.Lim, S.K., et al., Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition. Nano Letters, 2008. 8(5): pp. 1386-1392.
146.Clark, A.H., Electrical and Optical Properties of Amorphous Germanium Physical Review, 1967. 154(3): pp. 750-757.
147.Kobayashi, H., et al., Electrical properties of evaporated polycrystalline Ge thin-films. Thin Solid Films, 1997. 300(1-2): pp. 138-143.
148.Ortiz, A., et al., Characterization of amorphous aluminum oxide films prepared by the pyrosol process. Thin Solid Films, 2000. 368(1): pp. 74-79.