簡易檢索 / 詳目顯示

研究生: 管敏心
Guan, Minxin
論文名稱: 高熵氧化物系統的組成與性質
Microstructure and Properties of Entropy-stabilized Oxide Systems
指導教授: 簡朝和
Jean, Jau-Ho
口試委員: 葉均蔚
Yeh, Jien-Wei
林樹均
Lin, Su-Jien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: 高熵氧化物氧化銅
外文關鍵詞: Entropy-stabilized-oxide, Entropy, CuO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年的研究顯示高熵材料不再僅限於金屬,高熵也可使多元陶瓷在高溫形成穩定的單一結構。先前研究提出的高熵氧化物為(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O,並證實此系統在高溫下是氯化鈉型結構的單一相,各元素分布均勻,且在不同溫度具單相與多相的可逆相變化。為了在有限的溫度區間觀察到較多現象,本研究採用化學法來製備高熵氧化物的粉末,成功將(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O的相轉換溫度降低。探討高熵氧化物方面,本研究嘗試減少(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O的成分,發現(Mg0.25Ni0.25Cu0.25Zn0.25)O也符合高熵材料的條件與特性,並觀察到兩種高熵氧化物在低溫的析出相皆為氧化銅。接著量測上述兩個高熵陶瓷在單相與多相結構時的介電性質、微結構、價態、電阻率、以及活化能,比較並探討之間的差異,找出這兩個高熵陶瓷系統可能的應用。


    Entropy-stabilized oxide systems with four and five cations have been synthesized by the thermal decomposition of a metal–nitrate–citrate complex at 800-925 °C. A five-component oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O is found to exhibit a reversible transformation between a multi-phase and single-phase state at elevated temperatures. Experimental results show that the cations in the single-phase state with a rocksalt structure are distributed homogeneously. The phase transformation temperature is reduced for the powders synthesized by a wet chemical reaction route. Similar results are also observed in the four-component oxide (Mg0.25Ni0.25Cu0.25Zn0.25)O. Effects of chemical compositions and phase formation on physical properties of the above entropy-stabilized oxide systems are investigated.

    第一章 前言-1 1.1 晶體結構與元素分佈-1 1.2 價數平衡機制-2 1.3 極高的介電常數-2 1.4 研究動機與內容-3 第二章 實驗步驟-4 2.1 原料-4 2.2 粉體合成-4 2.3 試片製備-4 2.4 X-ray繞射分析-5 2.5 微結構觀察-5 2.6 介電性質與阻抗分析-5 2.7 元素價態分析-6 2.8 熱重熱差分析-6 2.9 熱傳性質量測-6 第三章 結果與討論-7 3.1 物相分析-7 3.2 緻密程度觀測-7 3.3 熱擴散係數-8 3.4 介電常數-9 3.5 元素價態分析-9 3.5.1 銅離子-9 3.5.2 鎳離子-10 3.5.3 鈷離子-10 3.6 熱重熱差分析-10 3.7 低溫二次相分析-11 3.8 部分相圖-12 3.9 高溫單相微結構-12 3.10 低溫多相微結構-13 3.11 電阻率與介電損失-14 3.12 阻抗分析-15 第四章 結論-17 參考文獻-18

    [1]J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes,” Advan. Eng. Mater., 6 [5], 299-303 (2004).
    [2]B. Cantor, I. Chang, P. Knight, and A. Vincent, “Microstructural Development in Equiatomic Multicomponent Alloys,” Mater. Sci. Eng., 375, 213-18 (2004).
    [3]B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, “A Fracture-resistant High-entropy Alloy for Cryogenic Applications,” Science, 345, 1153-58 (2014).
    [4]A. Gali, and E. George, “Tensile Properties of High- and Medium-entropy Alloys,” Intermetallics, 39, 74-78 (2013).
    [5]C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J. P. Maria, “Entropy-stabilized Oxides,” Nat. Commun., 6, 8485 (2015).
    [6]Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, “Microstructures and Properties of High-entropy Alloys,” Prog. in Mater. Sci., 61, 1-93 (2014).
    [7]D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, “Colossal Dielectric Constant in High Entropy Oxides,” Phys. Status Solidi – R., 10 [4], 328-33 (2016).
    [8]Zs. Rak, C. M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J. P. Maria, and D. W. Brenner, “Charge Compensation and Electrostatic Transferability in Three Entropy-stabilized Oxides: Results from Density Functional Theory Calculations,” J. Appl. Phys., 120 [9], 095105 (2016).
    [9]R. Zuow, J. Rödel, R. Chen, and L. Li, “Sintering and Electrical Properties of Lead-Free Na0.5K0.5NbO3 Piezoelectric Ceramics,” J. Am. Ceram. Soc., 89 [6], 2010-15 (2006).
    [10]H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron,” J. Am. Ceram. Soc., 82 [11], 3043-48 (1999).
    [11]M. L. Baesso, A. C. Bento, A. R. Duarte, A. M. Neto, L. C. M. Miranda, J. A. Sampaio, T. Catunda, S. Gama, and F. C. G. Gandra, “Nd2O3 Doped Low Silica Calcium Aluminosilicate Glasses: Thermomechanical Properties,” J. Appl. Phys., 85 [12], 8112-18 (1999).
    [12]M. Yamasaki, S. Kagao, and Y. Kawamura, “Thermal Diffusivity and Conductivity of Zr55Al10Ni5Cu30 Bulk Metallic Glass,” Scrip. Mater., 53 [1], 63-67 (2005).
    [13]R. W. Powell, C. Y. Ho, and P. E. Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS, vol. 8, 1966
    [14]E. R. G. Eckert, and R. M. Drake, Heat and Mass Transfer, McGraw-Hill Inc., 1959
    [15]G. Yang, A. D. Migone, and K. W. Johnson, “Relationship between Thermal Diffusivity and Mean Free Path,” Am. J. Phys., 62, 370-72 (1994).
    [16]S. Raghavan, H. Wang, W. D. Porter, R. B. Dinwiddie, and M. J. Mayo, “Thermal Properties of Zirconia Co-doped with Trivalent and Pentavalent Oxides,” Acta Mater., 49, 169-79 (2001).
    [17]A. Murakawa, H. Ishii, and K. Kakimoto, “An Investigation of Thermal Conductivity of Silicon as a Function of Isotope Concentration by Molecular Dynamics,” J.Cryst. Growth, 267, 452-57 (2004).
    [18]D. G. Cahill, and F. Watanabe, “Thermal Conductivity of Isotopically Pure and Ge-doped Si Epitaxial Layers from 300 to 550 K,” Phys. Rev. B, 70, 235322 (2004).
    [19]D. T. Morelli, and J. P. Heremans, “Estimation of the Isotope Effect on the Lattice Thermal Conductivity of Group IV and Group III-V Semiconductors,” Phys. Rev. B, 66, 195304 (2002).
    [20]Y. Wan, Y. Zhang, X. Wang, and Q. Wang, “Electrochemical Formation and Reduction of Copper Oxide Nanostructures in Alkaline Media,” Electrochem. Commun., 36, 99-102 (2013).
    [21]C. K. Mavrokefalos, M. Hasan, J. F. Rohan, R. G. Compton, and J. S. Foord, “Electrochemically Deposited Cu2O Cubic Particles on Boron Doped Diamond Substrate as Efficient Photocathode for Solar Hydrogen Generation,” Appl. Surf. Sci., 408, 125-34 (2017).
    [22]J. Keraudy, A. Ferrec, M. Richard-Plouet, J. Hamon, A. Goullet, and P. Y. Jouan, “Nitrogen Doping on NiO by Reactive Magnetron Sputtering: A New Pathway to Dynamically Tune the Optical and Electrical Properties,” Appl. Surf. Sci., 409, 77-84 (2017).
    [23]Z. Gu, D. Bin, Y. Feng, K. Zhang, J. Wang, B. Yan, S. Li, Z. Xiong, C. Wang, Y. Shiraishi, and Y. Du, “Seed-mediated Synthesis of Cross-linked Pt-NiO Nanochains for Methanol Oxidation,” Appl. Surf. Sci., 411, 379-85 (2017).
    [24]C. A. Chagas, E. F. de Souza, M. C. N. A. de Carvalho, R. L. Martins, and M. Schmal, “Cobalt Ferrite Nanoparticles for the Preferential Oxidation of CO,” Appl. catal. A, General., 519, 139-45 (2016).
    [25]K. Park, D. A. Hakeem, and J. S. Cha, “Synthesis and Structural Properties of Thermoelectric Ca3−xAgxCo4O9+δ Powders,” Dalton Trans., 45, 6990 (2016).
    [26]H. Singh, A. K. Sinha, M. N. Singh, P. Tiwari, D. M. Phase, and S. K. Deb, “Spectroscopic and Structural Studies of Isochronally Annealed Cobalt Oxide Nanoparticles,” J. phys. chem. solids., 75, 397-402 (2014).
    [27]Y. K. Jeong, and G. M. Choi, “Nonstoichiometry and Electrical Conduction of CuO,” J. phys. chem. solids., 57, 81-84 (1996).
    [28]F. M. Li, R. Waddingham, W. I. Milne, A. J. Flewitt, S. Speakman, J. Dutson, S. Wakeham, and M. Thwaites, “Low Temperature (<100 °C) Deposited P-type Cuprous Oxide Thin Films: Importance of Controlled Oxygen and Deposition Energy,” Thin Solid Films, 520 [4], 1278-84 (2011).
    [29]N. Ponpandian, P. Balaya, and A. Narayanasamy, “Electrical Conductivity and Dielectric Behaviour of Nanocrystalline NiFe2O4 Spinel,” J. Phys.: Condens. Matter., 14 , 3221-37 (2002).
    [30]C. W. Nan, Y. Shen, and J. Ma, “Physical Properties of Composites Near Percolation,” Annu. Rev. Mater. Res., 40, 131-51 (2010).
    [31]G. W. Walter, “A Review of Impedance Plot Methods Used for Corrosion Performance Analysis of Painted Metals,” Corros. Sci., 26 [9], 681-703 (1986).
    [32]R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, and N. Ahlawat, “Rietveld Refinement, Impedance Spectroscopy and Magnetic Properties of Bi0.8Sr0.2FeO3 Substituted Na0.5Bi0.5TiO3 Ceramics,” J. Magn. Magn. Mater., 414, 1-9 (2016).
    [33]J. Ashok, N. Purnachand, J. S. Kumar, M. S. Reddy, B. Suresh, M. P. F. Graça, and N. Veeraiah, “Studies on Dielectric Dispersion, Relaxation Kinetics and A.C. Conductivity of Na2O-CuO-SiO2 Glasses Mixed with Bi2O3-Influence of Redox Behavior of Copper Ions,” J. Alloy. Compd., 696, 1260-68 (2017).
    [34]S. Presto, and M. Viviani, “Effect of CuO on Microstructure and Conductivity of Y-doped BaCeO3,” Solid State Ionics, 295, 111-16 (2016).

    QR CODE