簡易檢索 / 詳目顯示

研究生: 廖珮妤
Pei-Yu Liao
論文名稱: 柴胡BkERF1基因表現分析及其蛋白質之表現
Transcription analysis and recombinant protein expression for the Bupleurum kaoi encoding BkERF1 gene
指導教授: 林彩雲
Tsai-Yun Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 69
中文關鍵詞: 高氏柴胡乙烯回應因子
外文關鍵詞: Bupleurum kaoi, ethylene-responsive factor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析了實驗室先前所分離的高氏柴胡BkERF1基因之轉錄並表現其重組蛋白質,依據ERF保留區段的結構,BkERF1蛋白質可歸類為ERF蛋白質的subcluster B3及class III之成員。預測BkERF1內的保守度高的Arg83, 85, 95, 103與Trp87, 105 是GCC box的結合位置。BkERF1 在高氏柴胡的不同器官皆可表現。雖然MeJA或ACC處理只稍微增加高氏柴胡組培根 BkERF1的轉錄,然而這兩者荷爾蒙的組合導致顯著的協同效應使BkERF1轉錄大幅增加,顯示BkERF1對於MeJA及ET交互訊息傳導途徑的重要性。


    Transcription of the previously isolated Bupleurum kaoi gene, BkERF1, was analyzed and the recombinant protein was expressed in this study. The BkERF1 protein which contains conserved ethylene responsive transcriptional factor domain is categorized to the member of subcluster B3 and class III of the ERF proteins based on structural organization. The conserved residues Arg83, 85, 95, 103 and Trp87, 105 in BkERF1 are predicted to be the GCC box binding site. BkERF1 was found to constitutively express in all different organs of B. kaoi. Though MeJA or ACC alone slightly increased the transcription of BkERF1 in B. kaoi adventitious roots, a combination of these two hormones resulted in a synergistic effect on the increase of BkERF1 transcripts. These results suggest that the importance of BkERF1 in the regulation of MeJA and ET cross-talk signaling pathway.

    Abstract (in Chinese) --------------------------------------------------------------i Abstract ------------------------------------------------------------------------------ii Acknowledgment------------------------------------------------------------------------------- iii List of Tables -----------------------------------------------------------------------------------v List of Figures --------------------------------------------------------------------------------vi Abbreviations ------------------------------------------------------------------------vii Introduction -----------------------------------------------------------------------------------1 Classification of ERF/AP2 -----------------------------------------------------------4 Structure of ERF/AP2 -----------------------------------------------------------------5 Materials and Methods -------------------------------------------------------------9 1. Plant growth and treatment -----------------------------------------9 2. Total RNA extraction ------------------------------------------------9 3. Reverse transcription ------------------------------------------------10 4. Relative quantification real-time PCR (qRT-PCR) --------------11 5. pET32 construct preparation --------------------------------------13 6. Competent cell preparation and plasmid transformation into bacteria------14 7. Mini-preparation of plasmid DNA and double-stranded DNA sequencing--15 8. His-Tag protein expression and purification ---------------------16 9. Protein quantification and gel electrophoresis ------------------17 10. Function prediction for the BkERF1 protein --------------------18 Results and Discussion --------------------------------------------------------------19 1. pET32 EK/LIC construction and protein expression ------------19 2. The expression of BkERF1 and BkDF1 transcripts -------------20 3. BkERF1 harbors identical residues binding to GCC box -------22 Conclusion ----------------------------------------------------------------------------27 References ----------------------------------------------------------------------------28 Tables ----------------------------------------------------------------------------------45 Figures ---------------------------------------------------------------------------------46 Appendix ------------------------------------------------------------------------------54 Table 1. Results of PSI-BLAST using BkERF1 domain as query in Arabidopsis database ------------------------------------------------54 Figure 1. Multiple sequences alignment of BkERF1 and related PSI-BLAST proteins at iteration 3 from Arabidopsis database---63 Figure 2. Characteristics of Class I-IV of ERF subfamily -------------------69

    Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R. (2007) ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. Plant Cell (in press).
    Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463-2480.
    Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17, 5484-5496.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
    Altschul SF, Koonin EV. (1998) Iterated profile searches with PSI-BLAST - a tool for discovery in protein databases. Trends Biochem Sci. 23, 444-447.
    Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. (2004) Anatagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460-3479.
    Aoyagi H, Kobayashi Y, Yamada K, Yokoyama M, Kusakari K, Tanaka H. (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers, Appl Microbiol Biotechnol. 57, 482-488.
    Aravind L, Koonin EV. (1999) Gleaning non-trivial structural functional and evolutionary information about proteins by iterative database searches. J Mol Biol. 287, 1023-1040.
    Audenaert K, De Meyer GB, Hofte MM. (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128, 491-501.
    Banno H, Ikeda Y, Niu QW, Chua NH. (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13, 2609-2618.
    Berrocal-Lobo M, Molina A. (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact. 17, 763-770.
    Berrocal-Lobo M, Molina A, Solano R. (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29, 23-32.
    Bobb AJ, Eiben HG, Bustos MM. (1995) PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J. 8, 331–343.
    Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM. (2003) A role for the GCC-box in Jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 132, 1020-1032.
    Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL. (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci. USA. 101, 4706-4711.
    Buttner M, Singh KB. (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci. USA. 94, 5961–5966.
    Campbell EJ, Schenk PM, Kazan K, Penninckx I, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM. (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol. 133, 1272-1284.
    Cao H, Li X, Dong XN. (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci. USA. 95, 6531-6536.
    Cao Y, Song F, Goodman RM, Zheng Z. (2006) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol.163, 1167-1178.
    Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Despress C, Martin GB. (2003) The tomoto transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 5, 3033-3050.
    Chen G, Hu Z, Grierson D. (2007b) Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. J Plant Physiol. (in press).
    Chen LR, Chen YJ, Lee CY, Lin TY. (2007a) MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi, Plant Sci. (in press).
    Chiang LC, Ng LT, Liu LT, Shieh DE, Lin CC. (2003) Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species, Planta Med. 69, 705-709.
    Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ. (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298, 1238-1241.
    Dellagi A, Helibronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, Toth IK, Cooke DE, Lyon GD, Birch PR. (2000) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe Interact. 13, 1092-1101.
    Dimova DK, Stevaux O, Frolov MV, Dyson NJ. (2003) Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev. 17, 2308-2320.
    Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751-763.
    Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR. (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155-168.
    Feys BJ, Parker JE. (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449-455.
    Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM. (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054.
    Fischer U, Droge-Laser W. (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant-Microbe Interact. 17, 1162-1171.
    Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12, 393-404.
    Gamborg OL, Miller R A, Ojima K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 50, 151-158.
    Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251-1261.
    Glazebrook J. (2001) Genes controlling expression of defense responses in Arabidopsis--2001 status. Curr Opin Plant Biol.4, 301-308.
    Grandori C, Cowley SM, James LP, Eisenman RN. (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 16, 653-699.
    Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB. (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14, 817-831.
    Gu YQ, Yang C, Thara VK, Zhou J, Martin GB. (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12, 771-786
    Gutterson N, Reuber TL. (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol. 7, 465-471.
    Hao DY, Ohme-Takagi M, Sarai A. (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem. 273, 26857-26861.
    Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC. (2003) The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. Mol Biol Evol. 20, 735-747.
    Horvath DM, Huang DJ, Chua NH. (1998) Four classes of salicylate-induced tobacco genes. Mol Plant Microbe Interact. 11, 895-905.
    Jakab G, Ton J, Flors V, Zimmerli L, Metraux JP, Mauch-Mani B. (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139, 267-274.
    Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225.
    Jones DT. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 292, 195-202.
    Kagaya Y, Ohmiya K, Hattori T. (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plant. Nucleic Acids Res. 27, 470-478.
    Kaliff M, Staal J, Myrenas M, Dixelius C. (2007) ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling. Mol Plant Microbe Interact. 20, 335-345.
    Kariola T, Brader G, Li J, Palva ET. (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17, 282-294.
    Klucher KM, Chow H, Reiser L, Fischer RL. (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8, 137-153.
    Knight H, Veale EL, Warren GJ, Knight MR. (1999) The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11, 875-886.
    Kohler C, Hennig L, Spillane C, Pien S, Gruissem W. Grossniklaus U. (2003) The polycomb-group protein ME-DEA regulated seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17, 1540-1553.
    Lin WY. (2004) Identification of three Bupleurum species through a rapid detection method using the sequence-specific oligonucleotide within ribosomal DNA internal transcribed spacer as probe, Master Dissertation, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., pp. 1-91.
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406.
    Liu Y, Zhao TJ, Liu JM, Liu WQ, Liu Q, Yan YB, Zhou HM. (2006) The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and GCC box, FEBS Lett. 580, 1303-1308.
    Livak KJ, Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25, 402-408.
    Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165-178.
    Lorenzo O, Solano R. (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol. 8, 532-540.
    Lu M, Tang X, Zhou JM. (2001) Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13, 437-447.
    McDowell JM, Dangl JL. (2000) Signal transduction in the plant immune response. Trends Biochem Sci. 25, 79-82.
    McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 139, 949-959.
    Moose SP, Sisco PH. (1996) Glossy 15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10, 3018–3027.
    Nasir KH, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R. (2005) High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J. 43, 491-505.
    Navarro P, Giner RM, Recio MC, Manez S, Cerda-Nicolas M, Rios JL. (2001) In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium, Life Sci. 68, 1199-1206.
    Ohme-Takagi M, Shinshi H. (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7, 173-182.
    Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959-1968.
    Okamuro JK, Caster B, Villarroel R, Montagu MV, Jofuku KD. (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci. USA, 94, 7076-7081.
    Onate-Sanchez L, Singh KB. (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128, 1313-1322.
    Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH. (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13, 1035-1046.
    Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF. (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113.
    Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Farid Regad, Latché A, Pech JC, Bouzayen M. (2006) Sl-ERF2, a Tomato Ethylene Response Factor Involved in Ethylene Response and Seed Germination. Plant Cell Physiol. 47, 1195-1205.
    Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D. (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 141, 910-923.
    Rakwal R, Komatsu S. (2004) Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis. Mol Biol Rep. 31, 217-230.
    Ramanathan Y, Zhang H, Aris V, Soteropoulos P, Aaronson SA, Tolias PP. (2002) Functional cloning, sorting, and expression profiling of nucleic acid-binding proteins. Genome Res. 12, 1175-1184.
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110.
    Riechmann JL, Meyerowitz EM. (1998) The AP2/EREBP family of plant transcription factors. Bio Chem. 379, 633-646.
    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 290, 998-1009.
    Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci. USA, 97, 11655-11660.
    Shinozaki K, Yamaguchi-Shinozaki K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 3, 217-223.
    Shinshi H, Usami S, Ohme-Takagi M. (1995) Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol. 27, 923-932.
    Singh KB, Foley RC, Onate-Sanchez L. (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 5, 430-436.
    Solano R, Stepanova A, Chao Q, Ecker JR. (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12, 3703-3714.
    Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM. (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770.
    Stockinger EJ, Gilmour SJ, Thomashow MF. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci. USA, 94, 1035-1040.
    Stracke R, Werber M, Weisshaar B. (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 4, 447-456.
    Suzuki M, Kao CY, McCarty DR. (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9, 799–807.
    Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J. (2004) Anatagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol. 45, 803-809.
    Thara VK, Tang X, Gu YQ, Martin GB, Zhou JM. (1999) Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant J. 20, 475–483.
    Thomma BPHJ, Eggermont K, Broekaert WF, Cammue BPA. (2000) Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem. 38, 421-427.
    Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF. (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci. USA, 95, 15107-15111.
    Thomma BP, Penninckx IA, Broekaert WF, Cammue BP. (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol. 13, 63-68.
    Thompson JD, Higgins DG, Gibson TJ. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
    van der Fits L, Memelink J. (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295-297.
    van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B. (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127, 4971-4980.
    Vergani P, Morandini P, Soave C. (1997) Complementation of a yeast delta pkc1 mutant by the Arabidopsis protein-ANT. FEBS Lett. 400, 243–246.
    Weigel D. (1995) The AP2 domain is related to a novel type of DNA binding domain. Plant Cell 7, 388-389.
    Wilson K, Long D, Swinburne J, Coupland G. (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8, 659-671.
    Wu K, Tian L, Hollingworth J, Brown DCW, Miki B. (2002) Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol. 128, 30-37.
    Xu Y, Chang PF, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA. (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6, 1077-1085.
    Yamamoto S, Suzuki K, Shinshi H. (1999) Elicitor-responsive, ethyleneindependent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J. 20, 571-579
    Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D. (2004) The pepper transcription factor CalphaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136, 2862-2874.
    Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689-707.
    Zhou J, Tang X, Martin GB. (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 16, 3207–3218.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE