研究生: |
鄭善妮 Cheng, Shan-Ni |
---|---|
論文名稱: |
台灣女性教育報酬率之實證研究 The Empirical Study on the Returns to Education: Evidence from Female Workers in Taiwan. |
指導教授: |
莊慧玲
Chuang, Hwei-Lin |
口試委員: |
林世昌
黃麗璇 |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 經濟學系 Department of Economics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 教育報酬率 、女性 、內生性問題 、二階段工具變數法 |
外文關鍵詞: | Return to Education, Female, Endogeneity Problem, Two-stage Least Square |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今女性受教育的普及程度與勞動參與程度愈來愈高,因此女性在勞動市場中扮演著不可或缺的角色。勞動經濟學中,教育報酬率之估計一直都是重要議題之一。估計女性教育報酬率存在選擇偏誤、內生問題與異質特性,若使用傳統OLS估計法則會產生估計偏誤。故本文之重點為探討如何準確估計出女性教育報酬率,並以台灣的資料作為試驗。本文將使用Heckman二階段估計法、二階段工具變數法與傾向分數配對法,試圖修正自我選擇與內生問題。另外,針對教育報酬率的異質特性,本文採用分量迴歸模型,期望能在不同薪資水準下,反映真實的教育報酬率。本研究的實證結果發現,不同的估計方式所得到的高等教育報酬率約介於3%-10%,其中OLS估計法之結果最低,其次依序為Heckman二階段估計法、二階段工具變數法、傾向分數配對法,證明OLS估計有嚴重低估問題。而在分量迴歸模型估計結果則發現,忽略選擇偏誤與內生問題,將使女性教育報酬率之薪資分配右尾嚴重低估,教育報酬率與薪資分配呈現顯著正向關係。由本文研究可得知,教育與個人能力會互為強化,因此教育會擴大女性間薪資的差距。
The role of female in the labor market becomes indispensable as a result of the increasing popularization of female education, as well as the expanding labor force participation of women. Furthermore, estimating the return to education is always an important issue in labor economics. Three potential problems exist in estimating the return to education of females: selection bias, endogeneity and heterogeneous characteristics. Because of these problems, the traditional OLS estimation will lead to biased results. The goal of this thesis is to discuss how to obtain the unbiased estimate of the return to education of females using Taiwan’s data. This study applies the Heckman’s two-step estimation approach, the two-stage least squares estimation, and the propensity score matching approach to deal with the selection bias and the endogeneity problems. In addition, this study adopts the quantile regression model to take into account the heterogeneous characteristics issue in order to obtain better estimates of the return to education at different wage levels. The estimation results show that the return to higher education from different econometrics methods is between 3%-10% approximately. The estimated return from the OLS estimation method is the smallest, and followed by the Heckman’s two-step estimation approach, the two-stage least squares estimation, and the propensity score matching approach. This result suggests that the OLS estimation has largely underestimated the return to education. The quantile regression model’s results indicate that ignoring the selection bias and the endogeneity problems will underestimate the return to education of females on the right tail of the wages distribution. The return to education and the wages distribution show a significantly positive relationship. This study shows that education and personal skills are mutually reinforcing, hence females wage gap will be enlarged by education.
符碧真(1996),〈教育投資報酬率長期變化之剖析—以我國教育發展個案為例〉,《教育研究資訊》,第4卷,第1期,頁82-99。
李待弟(2006),〈全民健康保險糖尿病醫療給付改善方案初步影響評估〉,國立台灣大學衛生政策與管理研究所碩士論文。
李靜洵(2009),〈台灣的教育報酬率-兼論高教擴張之影響〉,國立清華大學經濟學研究所碩士論文。
李宜芳(2007),〈家庭背景對教育投資報酬之影響-台灣實證〉,國立台灣大學國家發展研究所碩士論文。
林麗真(2011),〈比較傾向分數配對後不同透析模式病患之長期醫療成本〉,國立台灣大學健康政策與管理研究所碩士論文。
林倩如(2007),〈高等教育值得投資嗎?研究所教育報酬之探討〉,國立中央大學經濟學研究所碩士論文。
林于權(2004),〈台灣地區教育投資報酬率之實證分析-以分量迴歸模型〉,國立暨南國際大學經濟學研究所碩士論文。
林文德、謝其政、邱尚志、吳慧俞、黃一展 (2010),〈以傾向分數配對法評估糖尿病論質計酬方案之成效〉,《臺灣公共衛生雜誌》,第29卷,第1期,頁54 -63
賴偉文(2008),〈教育報酬、工資不均與異質性人力資本的研究〉,國立政治大學經濟學研究所博士論文。
郭姿伶(2008),〈台灣教育報酬率之實證研究〉,淡江大學經濟研究所碩士論文。
紀乃加(1998),〈工資結構與教育報酬率之研究〉,國立中央大學產業經濟研究所碩士論文。
邱麗芳(2003),〈台灣地區大學教育報酬率時間變化趨勢分析〉,國立中央大學產業經濟研究所。
莊奕琦與賴偉文 (2011),〈不同世代下之教育報酬與能力差異〉,《經濟論文叢刊》,第39卷,第1期,頁81-113。
陳建良、管中閔 (2006),〈台灣工資函數與工資性別歧視的分量迴歸分析〉,《經濟論文》,第34卷,第4期,頁435-468。
陳文怡(2010),〈教育擴張、研究所教育的報酬與薪資不均度:臺灣的實證研究〉,淡江大學經濟研究所碩士論文。
吳慧瑛(2002),〈二十年來教育發展之經濟評估,1978-2001〉,《台灣經濟預測與政策》,第33卷,第2期,頁97-130。
袁明俊(2006),〈台灣高等教育私人投資報酬率之估算〉,國立交通大學經營管理研究所碩士論文。
Angrist, J. D. and A. B. Krueger (1991), “Does Compulsory Schooling Attendance After Schooling and Earning?” Quarterly Journal of Economics, 106(4), 979-1014.
Becker, G. S. (1964) Human Capital, New York: National Bureau of Economic Research.
Bound, J., D.A. Jaeger and R.M. Baker (1995), “Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogenous Explanatory Variables is Weak,” Journal of the American Statistical Association 90(430), 443-450.
Card, D. (1995), “Using Geographic Variation in College Proximity to Estimate the Return to Schooling,” In Louis N. Christofides, E. Kenneth Grant and Robert Swidinsky, (eds) Aspects of Labor Market Behaviors: Essays in Honor of John Vanderkamp, University of Toronto Press, Toronto, Canada, 201-222.
Card, D. (1999), “The Causal Effect of Education on Earnings,” In Ashenfelter, O. and D. Card, (eds) Handbook of Labor Economics, Volume 3A, Amsterdam: Elsevier.
Card, D. (2001), “Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems,” Econometrica, 69(5), 1127-1160.
Duflo, E. (2001), “Schooling and Labor Market Consequences of Schooling in Indonesia: Evidence from an Unusual Policy Experiment,” American Economic Review, 91(4), 795- 813
Gindling, T.H., M. Goldfarb and C.C. Chang (1995), “Changing Return to Education in Taiwan: 1978-91,” World Development, 23(2), 343-356.
Griliches, Z. (1977), “Estimating the Return to Schooling: Some Econometric Problems,” Econometrica, 45(1), 1-22.
Harmon, C. and I. Walker. (1995), “Estimates of the Economic Returns to Schooling for the United Kingdom,” American Economic Review, 85(5), 1278-1286.
Hausman J.A. (1978), “Specification Test in Econometrics,” Econometrica, 46(3), 262-280.
Heckman, J. J.(1979), “Sample Selection Bias as a Specification Error,” Econometrica, 47, 153-162.
Koenker, R., and G. J. Bassett (1978), “Regression Quantiles,” Econometrica, 46, 33-50.
Mincer, J. (1958) “Investments in Human Capital and Personal Income Distribution,” Journal of Political Economy, 56, 281-302.
Mincer, J. (1974), Schooling, Experience, and Earning, New York: Columbia University Press,.
Fan, M., Zhang, J., and Chen, X. (2009), “Propensity Score Techniques to Evaluate Returns of College Education,” International Joint Conference on Computational Sciences and Optimization, 451-454.
Morgan, Stephen L., David J. Harding. (2006), “Matching Estimators of Causal Effects Prospects and Pitfalls in Theory and Practice.” Sociological Methods and Research, 35(1), 3-60.
Psacharopoulos, G. (1981), “Returns to Education: an Updated International Comparison,” Comparative Education, 17(3), 321-341.
Psacharopoulos, G. (1985), “Return to Education: A Further International Update and Implications,” Journal of Human Resources, 20(4), 583-604.
Rosenbaum, P. R. and Rubin, D. B. (1983), “The Central Role of the Propensity Score in Observational Studies for Causal Effects,” Biometrika, 70, 41–55.
Smith, J. and Todd, P. (2004), “Does Matching Overcome LaLonde’s Critique of Nonexperimental Estimators?” Journal of Economics, 125, 305–353.
Staiger, D. and J.H. Stock (1997), “Testing for Weak Instruments in Linear IV Regression,” In: J.H. Stock and D.W.K. Andrews, (eds) Identification and Inference for Econometric Models: A Festschrift in Honor of Thomas Rothenberg, Cambridge University Press, Cambridge (2005), 80–108.
Stock, J.H. and M. Yogo (2005), “Instrumental Variables Regression with Weak Instruments,” Econometrica, 65(3), 557-586.
Trostel P., I. Walker and P. Woolley (2002), “Estimates of the Economic Return to Schooling for 28 Countries,” Labour Economics, 9(1), 1-16.