研究生: |
林威志 Lin Wei-Zhi |
---|---|
論文名稱: |
射流振盪器之設計與PIV分析 Development of Fluidic Oscillators and PIV Analysis |
指導教授: |
楊鏡堂
Jing-Tang Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 153 |
中文關鍵詞: | 射流振盪器 |
外文關鍵詞: | fluidic oscillator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本文主旨在於設計新型的射流振盪器,以作為流量計、噴霧器以及混合器之元件。首先以實驗設計分析迴饋型射流振盪器中,壁面張角與分流器幾何形狀對振盪器流場特性的影響。選用不同壁面張角及分流器形狀之參考用振盪器原型(prototype)進行流場觀測,歸納出不同幾何形狀對流場型態的影響,由整理歸納之結果,發展出性能更優良的階梯型迴饋振盪器,再以流場觀測與各種定量的量測來探討新型振盪器與原型之間的差異。
射流振盪器的流場型態大致上可分為三個部分:主噴流、迴流區以及迴饋流。主噴流的振盪行為是由迴饋流的衝擊效應造成的,但迴流區會對主噴流產生抑制作用,使主噴流不易振盪。若欲增加振盪器的穩定振盪範圍,增加迴饋流的衝擊效應及降低迴流區的抑制作用是兩大主要方向,而長階梯的存在,不僅主噴流更易偏折而促使迴饋流的流量增加,也會降低迴流區的抑制作用,因此其穩定振盪範圍會比傳統型振盪器大。
藉由流場觀測可知,接觸壁面的張角在20度及30度時穩定振盪範圍較廣,而銳角分流器對於振盪器在振盪行為表現上,也比其他型式之分流器佳。
實驗結果顯示,傳統型振盪器的啟始穩定振盪為10 L/min,線性誤差為±4.76%(FSO),且穩定振盪狀況下的Euler number約等於60;長階梯型振盪器的啟始穩定振盪為5 L/min,線性誤差為±3.13%(FSO),且在達到穩定時,Euler number約等於30。因此,長階梯型振盪器在起始穩定振盪值、進出口壓力損耗以及振盪頻率對流量的線性誤差方面,都比傳統型振盪器佳。
第七章 參考文獻
Bouteille, D., 1973, Fluid Logic Controls and Industrial Automation, Wiley, New York, pp. 28-32.
Comparin, R. A., Glaettli, H. H., Mitchel, A. E. and Müller, H. R., 1962, “On the Limitations and Special Effect in Fluid Jet Amplifiers,” Symposium on Fluid Jet Control Devices, ASME.
Gebhard, U., Hein, H. and Schmidt, U., 1996, “Numerical Investigation of Fluidic Micro-Oscillators.” Micromech. Microeng., Vol. 6, pp.115-117.
Gebhard U., Hein H, Just E., and Ruther P., 1997, “Combination of a Fluidic Micro-Oscillator and Micro-Actuator in LIGA-Technique for Medical Application.” International Conference on Solid-State Sensors and Actuators Chicago, June 16-19.
Honda, S., “On the Role of a Target and Side Walls to Fluidic Oscillation.” Flucome 2000, Aug. 13-17, Sherbrooke(QC), Canada.
Igarashi, T., “Performance of New Type Vortex Shedder for Vortex Flowmeter,” Flucome 2000, Aug. 13-17, Sherbrooke(QC), Canada.
Shakouchi, T., 1989, “A New Fluidic Oscillator, Flowmeter, Without Control Port and Feedback Loop,” Journal of Dynamic Systems, Measurement, and Control, Vol. 111, pp. 535-539.
Teseř Václav, Allen W. K., and Tippetts, J. R., “Microfluidics-The Challenge of Low Re Flow Control,” Flucome 2000, Aug. 13-17, Sherbrooke(QC), Canada.
Tippetts, J. R., Ng, H. K., and Royle, J. K., 1973, “A Fluidic Flowmeter,” Automatica, Vol. 9, pp. 35-45.
Tippetts, J. R., Ng, H. K., and Royle, J. K., 1973, “An Oscillating Bistable Fluid Amplifier for Use as A Flowmeter,” Journal of Fluid Control (Fluidics Quarterly) Vol. 5, pp. 28-42.
Tritton, D. J., 1988, Physical Fluid Dynamics, Second Edition, Oxford University Press, New York, pp. 150-152.
Wang, H., Priestman, G. H., Beck, S. B. M., and Boucher, R. F., 1996, “Development of Fluidic Flowmeters for Monitoring Curde Oil production.” Flow Meas. Instrum., Vol. 7, No. 2, pp. 91-98.
Wang, H., Beck, S. B. M., Priestman, G. H., and Boucher, R. F., 1997, “Fluidic Pressure Pulse Transmitting Flowmeter,” Trans. I. Chem. E. Chemical Engineering Research and Design, Vol. 75, Part A, May, pp. 381-391.
Wang, H., Beck, S. B. M., Priestman, G. H., and Boucher, R. F., 1998, “A Remote Measuring Flow Meter for Petroleum and Other Industrial Applications,” J. Meas. Sci. Technol., Vol. 9, pp. 779-789.
Wright, P. H., 1980, “The Coanda Meter-A Fluidic Digital Gas Flowmeter,” J. Phys. E: Sci. Instrum., Vol. 13, pp. 433-436.
Yamasaki, H., and Honda, S., 1981, “A Unified Approach To Hydrodynamic Oscillator Type Flowmeters,” Journal of Fluid Control, Vol. 13, pp. 1-17.
Adames, R. B., 1979, “Flowmeter for Liquids,” United States Patent, Patent Number 4165639.
Grant, J., Cox, A. J., 1975, “Flowmeters,” United States Patent, Patent Number 3902367.
Okabayashi, M., Haruta, M., 1986, “Fluidic Flowmeter,” United States Patent, Patent Number 4610162.
Herzl, P. J., and Morrisville, P., 1985, “Oscillatory Flowmeter,” United States Patent, Patent Number 4550614.
Stouffer R. D., Bower, R., 1998, “Fluidic Flow Meter with Fiber Optic Sensor,” United States Patent, Patent Number 5827976.
楊東拾, 2001, 微粒子顯像測速儀於微流體中之應用, 國立台灣大學應用力學研究所碩士論文.