簡易檢索 / 詳目顯示

研究生: 李秉勳
Lee, Ping-Hsun
論文名稱: 磁力輔助研磨拋光性質之研究及其機台與操作方法之開發
Study on Properties of Magnetic Assisting Finishing and Development of subsequent Platform and Operating Method
指導教授: 張禎元
Chang, Jen-Yuan
口試委員: 詹子奇
Chan, Tzu-Chi
宋震國
Sung, Cheng-Kuo
徐冠倫
Hsu, Kuan-Lun
劉俊葳
Liu, Chun-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 150
中文關鍵詞: 磁力研磨磨粒流磁性磨粒磁流變液磁流變拋光研磨拋光磨漿蕭氏硬度計永久磁鐵磁場開關
外文關鍵詞: magnetic abrasive finishing, abrasive flow finishing, abrasive slurry, magnetorheological finishing, finishing, shore hardness, durometer, magnetic switch
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁力輔助研磨拋光為一種藉由施加磁場改變磁性磨料特性以達增強加工效果的技術。本研究針對現有相關技術尚未開發的潛能,建構一通用之實驗平台並研擬其操作手法,來開發及驗證一新方法技術。此平台可針對不同條件設定對加工效果的影響進行試驗,並評估將其應用於通用加工機具之可行性。

    此機台由刀具本體、線性運動平台、以及磨漿供應泵所組成。為了簡化設計縮減體積重量,採用無須供電及冷卻、單位體積可提供更高場強的永久磁鐵為磁場來源。刀具本體為低碳鋼所構成的磁迴路結構,將其內一對磁極反向置放的磁鐵產生之磁通導引至刀尖,並在該處形成水平橫越模式之磁場,而其場強可由一內置之滑塊連續調整。相較一般垂直穿透模式設計,水平橫越模式可在刀尖產生較高場強、工件厚度不受限制、毋須鐵磁性材質夾治具為輔助磁極。運動平台承載試片使其位於刀尖下方,可依需求設定速度、行程,並以升降來調整刀尖與試片之間距。磨漿供應泵以注射筒為本體,可裝填任意種類的磨漿,少量調配即可使用,並提供足夠之高壓以克服磨漿受刀尖高場強作用而劇增的流阻。磁性磨漿以商用磁流變液混入#1000號綠色碳化矽磨粒並添加調整流動性的矽油調配而成,依設定之供給量將其推送至加工區而達成連續供應。

    磨漿由供料泵推送擠出刀尖出料口時,將受該處高場強作用而形成半固態之磁刷,平台往復運動時磁刷將刮擦試片而達成研磨加工作用。經驗證可將初始表面粗糙度Ra~0.5 µm之鋁合金試片加工至Ra~0.06 µm,隨磁場強度增加材料的移除效率將隨之增加,加工後之表面亦略為細緻。而初始形成之磁刷在經約200~300趟的往復運動後將硬化而使加工效能大為提升,使原本需時5~6min之加工縮短至2~3 min。此磁刷固化的程度可以蕭氏硬度計配合特製治具來評估,其硬化前固化程度與場強呈正相關,而硬化後則無明顯相關。

    本研究所開發之機具及方法,經以上驗證具備應用於一般加工機具之可行性。而後續可望以全新之概念來設計刀具以充分開發此磁刷硬化現象之潛能,而達突破現有技術之性能表現。


    Magnetic assisting finishing is a machining process that the effect can be enhanced by applying a magnetic field to change the property of magnetic abrasives. This study aimed at the untapped potential of the present technology of magnetic abrasive finishing, where a novel technology and methodology was developed and verified by means of an innovative experimental platform for general purpose and the subsequent operating methods. The experiments for evaluating the processing effects influenced by different conditions therefore could be conducted by the platform developed. The feasibility of its application on general purpose tools was also evaluated.

    The platform is composed of a tool as the main part, a linear moving table, and a slurry supplying pump. For design simplification as well as for volume and weight reduction purpose, permanent magnets are adopted as the magnetic field source for it providing higher magnetic field strength per unit volume and requiring no power supply and cooling system.

    The tool per se is a magnetic circuit structure made of low carbon steel, in which the magnetic flux generated by a pair of reversely placed magnets is directed to the tool tip, where a the magnetic field of horizontal transverse mode is formed and its strength can be adjusted continuously by a movable slider acting as a mechanical magnetic switch. Comparing with the normal vertical through mode, the horizontal traverse mode allows for a higher magnetic field strength, unrestricted workpiece thickness, and requires no ferromagnetic fixtures as an auxiliary magnetic pole.

    The moving table carriering a specimen is located under the tool tip and provides a linear motion relative to the tool. The speed, displacement and grinding times can be set according to the experiment requirement, and the clearance between the tool tip and specimen, an important machining parameter, can be adjusted by lifting the table.

    The slurry supplying pump consists of a syringe where any type of slurry with small amount can be loaded after blending, as well as provides sufficient high pressure to overcome the dramatically increasing flow resistance of magnetized slurry caused by the high magnetic field strength near the tool tip.

    The magnetic abrasive slurry is composed of commercial magnetorheological fluid, the green silicon carbide #1000 as abrasive particles, and silicon oil as the diluent for adjusting the flow property. The slurry then is pushed to the working zone between the tool tip and workpiece continuously according to the set quantity.

    A semi-solid magnetic brush forms when the magnetic slurry is propelled by the supplying pump to the tool tip and magnetized there. When the table moves relative to the tool the magnetic brush scrubs a specimen on it to carry out a grinding process. It was verified that a aluminum alloy specimen with initial surface roughness of Ra~0.5 µm can turn to be Ra~0.06 µm after the process. The material removal efficiency could be increased, and the surface would be slightly finer with the increase of magnetic field strength. It was observed that the processing efficiency improves greatly as the magnetic brush gets hardened gradually during the 200-300 times of reciprocating motions. Consequently, a process that originally took 5~6 minutes can be finished in 2~3 minutes. The degree of hardening of the magnetic brush can be evaluated by a Shore durometer coupled with a special made fixture. The experiments verified that the degree of hardening at initial stage is positively correlated with the magnetic field strength, whereas no obvious correlation after saturation.

    In this study it has been verified that the facilities and methodologies developed are feasible and applicable on general purpose machining tool. Its capability for fully exploiting the potential of the magnetic brush hardening phenomenon would enable innovative concepts for tools design, and possible breakthroughs in performance current technologies could achieve therfore could be expected.

    摘 要 I Abstract II 誌 謝 IV 目 錄 V 圖目錄 VIII 表目錄 XIII 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 6 1-2-1 磁氣研磨法 6 1-2-2 磁流變液與磁流變拋光 7 1-2-3 磨粒流加工 13 1-2-4 類銑刀磨頭 13 1-2-5 歸納小結 15 1-3 研究動機與目標 16 1-3-1 體積重量與系統複雜之程度 16 1-3-2 產生磁場的來源 17 1-3-3 刀尖處之磁場模式 18 1-3-4 磨漿之供應 19 1-3-5 磁性磨料 20 1-3-6 小結 21 1-4 研究方法 21 1-5 本研究之貢獻 22 第2章 磁力研磨拋光之原理 23 2-1 傳統磨粒加工 23 2-2 磁氣研磨法 28 2-3 磁流變拋光 30 2-4 磨粒流與類銑刀 35 2-5 本機台加工特性及現象 37 2-5-1 磁刷成形與硬化 37 2-5-2 磨漿堆積與殘留 40 2-5-3 研磨加工機制 41 第3章 實驗平台之建構 45 3-1 機台建構之規劃 45 3-1-1 功能需求 45 3-1-2 設計構想 47 3-1-3 設計流程 50 3-2 刀具設計分析 52 3-2-1 概念設計與可行性分析 52 3-2-2 初步設計分析 56 3-2-3 工程設計分析 59 3-2-4 磁場測量與分析比對 65 3-3 線性運動平台 69 3-4 磨漿供料泵及管路 72 3-5 製造及組裝 74 3-5-1 刀具本體與龍門框架 74 3-5-2 線性運動平台與磨漿供應泵 76 3-5-3 供料管路與刀尖出料口 77 3-5-4 機台整體 77 第4章 實驗方法及儀器設備 79 4-1 先期試誤 79 4-1-1 磨漿配方及供給量 79 4-1-2 磨漿供應與管路 82 4-1-3 磨漿堆積與磁刷硬化 88 4-2 加工條件設定 90 4-2-1 機台調整設定 90 4-2-2 程式控制 91 4-2-3 物料材質 91 4-3 實驗方法步驟 92 4-3-1 磨漿調配與試片準備 92 4-3-2 程式機能 94 4-3-3 試片及磨漿之測量 94 4-3-4 操作流程步驟 96 4-4 檢測儀器及其它設備 97 第5章 實驗與結果討論 101 5-1 可行性驗證 101 5-1-1 研磨加工三階段 102 5-1-2 磁刷硬化之驗證 103 5-1-3 細磨粒研磨試驗 104 5-2 穩定性驗證 105 5-2-1 停機檢測問題 105 5-2-2 停機檢測操作 107 5-3 磁場強度驗證 125 5-3-1 加工區磁場強度設定 125 5-3-2 不同磁場強度的性能表現 126 第6章 結論與未來展望 133 6-1 研究目標之達成 133 6-1-1 可設定多樣加工條件之實驗平台 133 6-1-2 新方法技術之開發 134 6-1-3 作為普及應用之加工機具 135 6-2 各階段工作之特色 135 6-3 可精進處及其方案 137 6-3-1 刀具本體 137 6-3-2 機台其餘部分 139 6-3-3 研磨機制 140 6-4 主題延伸及展望 141 參考文獻 145

    [1] 安永暢男, 高木純一郎. "精密機械加工原理." 全華圖書 (2004)
    [2] 黃忠良. "新研磨技術與設備-尖端精密機械加工技術." 復漢出版社 (2000)
    [3] 廖榮釗. "磁力研磨技術." 機械工業雜誌 (1991)
    [4] 王阿成, 劉春和, 梁國柱. "膠體磁力研磨的開發與特性研究(III) 研究成果報告(精簡)."
    行政院國家科學委員會專題研究計畫 成果報告 (2011)
    [5] 梁國柱, 王阿成. "磁力研磨於滾珠螺桿螺旋拋光的應用研究(II) 研究成果報告(精簡版)." 行政院國家科學委員會專題研究計畫 成果報告 (2011)
    [6] Takeo Shinmura, Koya Takazawa, and Eiju Hatano. "Study on magnetic abrasive finishing: effects of various types of magnetic abrasives on finishing characteristics." Bulletin of the Japan Society of Precision Engineering 21.2 (1987): 139-141.
    [7] Takeo Shinmura, et al. "Study on magnetic abrasive finishing." CIRP annals 39.1 (1990): 325-328.
    [8] M. Fox, et al. "Magnetic abrasive finishing of rollers." CIRP annals 43.1 (1994): 181-184.
    [9] Takeo Shinmura, Eiju Hatano, and Koya Takazawa. "The development of magnetic- abrasive finishing and its equipment by applying a rotating magnetic field." Bulletin of JSME 29.258 (1986): 4437-4443.
    [10] Takeo Shinmura, and Toshio Aizawa. "Study on internal finishing of a non-ferromagnetic tubing by magnetic abrasive machining process." Bulletin of the Japan Society of Precision Engineering 23.1 (1989): 37-41.
    [11] Takeo Shinmura, Hitomi Yamaguchi, and Toshio Aizawa. "A new internal finishing process of non-ferromagnetic tubing by the application of a magnetic field: the development of a unit finishing apparatus using permanent magnets." International journal of the Japan Society for Precision Engineering 27.2 (1993): 132-137.
    [12] H. Yamaguchi, and T. Shinmura. "Study on a New Internal Finishing Process by the Application of Magnetic Abrasive Machining-Discussion of the Roundness." Journal-Japan Society For Precision Engineering 62 (1996): 1617-1621.
    [13] Takeo Shinmura, Hitomi Yamaguchi, and Yoshinori Shinbo. "A new internal finishing process of a non-ferromagnetic tubing by applying a rotating magnetic field." International Journal of the Japan Society for Precision Engineering 26.4 (1992): 302-304.
    [14] Hitomi Yamaguchi, Takeo Shinmura, and Atsushi Kobayashi. "Development of an internal magnetic abrasive finishing process for nonferromagnetic complex shaped tubes." JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing 44.1 (2001): 275-281
    [15] Hitomi Yamaguchi, Takeo shinmura, and Megumi SEKINE. "Uniform internal finishing of SUS304 stainless steel bent tube using a magnetic abrasive finishing process." Journal of manufacturing science and engineering 127.3 (2005): 605-611.
    [16] Takeo Shinmura, and Hitomi Yamaguchi. "Study on a new internal finishing process by the application of magnetic abrasive machining: internal finishing of stainless steel tube and clean gas bomb." JSME international journal. Ser. C, Dynamics, control, robotics, design and manufacturing 38.4 (1995): 798-804.
    [17] Takeo Shinmura. "Development of plane magnetic-abrasive finishing apparatus and its finishing performance." J. Jpn. Soc. Precis. Eng. 52.6 (1986): 1080-1086.
    [18] Takeo Shinmura, and Toshio Aizawa. "Development of Plane Magnetic Abrasive Finishing Apparatus and its Finishing Performance (2nd Report, Finishing Apparatus Using a Stationary Type Electro-magnet)." J. Jpn. Soc. Prec. Eng 54.5 (1988): 928-933.
    [19] Takeo Shinmura, Feng Hui Wang, and Toshio Aizawa. "Study on a new finishing process of fine ceramics by magnetic abrasive machining: on the improving effects of finishing efficiency obtained by mixing diamond magnetic abrasives with ferromagnetic particles." International journal of the Japan Society for Precision Engineering 28.2 (1994): 99-104.
    [20] Shaohui Yin, and Takeo Shinmura. "Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy." International Journal of Machine Tools and Manufacture 44.12-13 (2004): 1297-1303.
    [21] Jacob Rabinow. "The magnetic fluid clutch." AIEE Transactions 67 (1948): 1308-1315.
    [22] Willis M. Winslow, "Induced fibration of suspensions." Journal of applied physics 20.12 (1949): 1137-1140.
    [23] Jun Wang, and Guangyao Meng. "Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 215.3 (2001): 165-174.
    [24] Abdul-Ghani Olabi, and Artur Grunwald. "Design and application of magneto-rheological fluid." Materials & design 28.10 (2007): 2658-2664.
    [25] Monika Kciuk, and Roman Turczyn. "Properties and application of magnetorheological fluids." Journal of achievements in materials and manufacturing engineering 18.1-2 (2006): 127-130.
    [26] Andrea Spaggiari,. "Properties and applications of Magnetorheological fluids." Frattura ed Integrità Strutturale 7.23 (2013): 57-61.
    [27] Deepak Baranwal, and T. S. Deshmukh. "MR-fluid technology and its application-a review." International Journal of Emerging Technology and Advanced Engineering 2.12 (2012): 563-569.
    [28] Nicholas Rosenfeld, and N. M. Wereley. "Behavior of magnetorheological fluids utilizing nanopowder iron." International Journal of Modern Physics B 16.17n18 (2002): 2392-2398.
    [29] Mark R. Jolly, Jonathan W. Bender, and J. David Carlson. "Properties and applications of commercial magnetorheological fluids." Journal of intelligent material systems and structures 10.1 (1999): 5-13.
    [30] Mark R. Jolly, Jonathan W. Bender, and J. David Carlson. "Properties and applications of commercial magnetorheological fluids." Smart structures and materials 1998: passive damping and isolation. 3327(1998): 262-275.
    [31] James C. Poynor, " Innovative Designs for Magneto-Rheological Dampers", Ph.D Thesis, Virginia Tech (2001).
    [32] Li, W. H., and H. Du. "Design and experimental evaluation of a magnetorheological brake." The international journal of advanced manufacturing technology 21.7 (2003): 508-515.
    [33] Francesco Bucchi, et al. "A magnetorheological clutch for efficient automotive auxiliary device actuation." Frattura ed Integrità Strutturale 7.23 (2013): 62-74.
    [34] Alex S. Shafer, and Mehrdad R. Kermani. "On the feasibility and suitability of MR fluid clutches in human-friendly manipulators." IEEE/ASME Transactions on Mechatronics 16.6 (2010): 1073-1082.
    [35] Manuel A. Fernández, and Jen-Yuan Chang. "Design of an Adjustable Fail-Safe MRF Clutch With a Novel Field Blocking Mechanism for Robotic Applications." IEEE Access 9 (2021): 164912-164927.
    [36] Hesselbach, J. A. K. C., and Ch Abel-Keilhack. "Active hydrostatic bearing with magnetorheological fluid." Journal of applied physics 93.10 (2003): 8441-8443.
    [37] J. M. Guldbakke, , and J. Hesselbach. "Development of bearings and a damper based on magnetically controllable fluids." Journal of Physics: Condensed Matter 18.38 (2006): S2959.
    [38] David York, Xiaojie Wang, and Faramarz Gordaninejad. "A new MR fluid-elastomer vibration isolator." Journal of Intelligent Material Systems and Structures 18.12 (2007): 1221-1225.
    [39] Nishida, Takeshi, Yuki Okatani, and Kenjiro Tadakuma. "Development of universal robot gripper using MR α fluid." International journal of humanoid robotics 13.04 (2016): 1650017.
    [40] MRF Polishing | QED Technologies (https://qedmrf.com/mrf-polishing)
    [41] Daniel C. Harris. "History of magnetorheological finishing." Window and dome technologies and materials XII. 8016 (2011): 206-227.
    [42] Stephen D. Jacobs, et al. "Magnetorheological finishing: a deterministic process for optics manufacturing." International Conference on Optical Fabrication and Testing. 2576 (1995): 372-382.
    [43] William I. Kordonski, and Stephen D. Jacobs. "Magnetorheological finishing." International Journal of modern physics B 10.23n24 (1996): 2837-2848.
    [44] Donald Golini, et al. "Magnetorheological finishing (MRF) in commercial precision optics manufacturing." Optical manufacturing and testing III. 3782 (1999): 80-91.
    [45] Aric B. Shorey, , et al. "Design and testing of a new magnetorheometer." Review of scientific instruments 70.11 (1999): 4200-4206.
    [46] W. I. Kordonski, and D. Golini. "Fundamentals of magnetorheological fluid utilization in high precision finishing." Journal of Intelligent Material Systems and Structures 10.9 (1999): 683-689.
    [47] Don Golini, et al. "Precision optics fabrication using magnetorheological finishing." Optical Fabrication and Testing. Optica Publishing Group. 10289 (1998): 251-274.
    [48] William Kordonski, and Don Golini. "Progress update in magnetorheological finishing." International Journal of Modern Physics B 13.14n16 (1999): 2205-2212.
    [49] H. B. Cheng, Yeung Yam, and Y. T. Wang. "Experimentation on MR fluid using a 2-axis wheel tool." Journal of Materials Processing Technology 209.12-13 (2009): 5254-5261.
    [50] H. B. Cheng, et al. "Material removal and micro-roughness in fluid-assisted smoothing of reaction-bonded silicon carbide surfaces." Journal of Materials Processing Technology 209.9 (2009): 4563-4567.
    [51] William Kordonski, Aric B. Shorey, and Arpad Sekeres. "New magnetically assisted finishing method: material removal with magnetorheological fluid jet." Optical Manufacturing and Testing V. 5180 (2003): 107-114.
    [52] William I. Kordonski, Aric B. Shorey, and Marc Tricard. "Magnetorheological (MR) jet finishing technology." ASME International Mechanical Engineering Congress and Exposition. 47098 (2004): 77-84.
    [53] Larry Rhoades. "Abrasive flow machining: a case study." Journal of Materials Processing Technology 28.1-2 (1991): 107-116.
    [54] Sunil Jha, and V. K. Jain. "Design and development of the magnetorheological abrasive flow finishing (MRAFF) process." International Journal of Machine Tools and Manufacture 44.10 (2004): 1019-1029.
    [55] Sunil Jha, V. K. Jain, and Ranga Komanduri. "Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process." The International Journal of Advanced Manufacturing Technology 33.7 (2007): 725-729.
    [56] Satish Kumar, V. K. Jain, and Ajay Sidpara. "Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process." Precision engineering 42 (2015): 165-178.
    [57] Manas Das, V. K. Jain, and P. S. Ghoshdastidar. "Nano-finishing of stainless-steel tubes using rotational magnetorheological abrasive flow finishing process." Machining Science and Technology 14.3 (2010): 365-389.
    [58] A. Sadiq, and M. S. Shunmugam. "Investigation into magnetorheological abrasive honing (MRAH)." International Journal of Machine Tools and Manufacture 49.7-8 (2009): 554-560.
    [59] Masahiro Anzai, T. Sudo, and T. Nakagawa. "Development of magnetic abrasives and its finishing characteristics." Monthly Journal of the Institute of Industrial Science, University of Tokyo 43.11 (1991).
    [60] Anwesa Barman, and Manas Das. "Design and fabrication of a novel polishing tool for finishing freeform surfaces in magnetic field assisted finishing (MFAF) process." Precision Engineering 49 (2017): 61-68.
    [61] Anant Kumar Singh, Sunil Jha, and Pulak M. Pandey. "Nanofinishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process." International Journal of Machine Tools and Manufacture 63 (2012): 21-31.
    [62] Anant Kumar Singh, Sunil Jha, and Pulak M. Pandey. "Nanofinishing of fused silica glass using ball-end magnetorheological finishing tool." Materials and Manufacturing Processes 27.10 (2012): 1139-1144.
    [63] Anant Kumar Singh, Sunil Jha, and Pulak M. Pandey. "Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool." International Journal of Machine Tools and Manufacture 51.2 (2011): 142-151.
    [64] Anant Kumar Singh, Sunil Jha, and Pulak M. Pandey. "Magnetorheological ball end finishing process." Materials and Manufacturing Processes 27.4 (2012): 389-394.
    [65] 黃孟祥, 2000, 磁氣研磨法於微細電極表面拋光技術之研究, 國立雲林科技大學/機械工程學系, 碩士論文
    [66] 黃文科, 2001, 磁氣研磨拋光之研究, 國立雲林科技大學/機械工程學系, 碩士論文
    [67] 張耿維, 2003, 磁力研磨與電解磁力研磨之拋光特性研究, 國立中央大學/機械工程學系, 博士論文
    [68] 周展煌, 2009, 二維振動輔助磁力研磨之設備開發與其應用, 國立中央大學/機械工程學系, 碩士論文
    [69] Velentin L. Popov. "Contact Mechanics and Friction-Physical Principles and Application." (2010)
    [70] Valentin L. Popov, Markus Heß, Emanuel Willert. "Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems." Berlin Heidelberg: Springer-Verlag. ISBN 9783662587089 (2019).
    [71] Toshiro Doi, Ioan D. Marinescu and Eckart Uhlmann. "Handbook of Ceramics Grinding and Polishing, 2/e" (2014)
    [72] John Wiley & Sons, Inc M. P. Groover. "Fundamentals of Modern Manufacturing 2/e" (2002).
    [73] Mikell P. Groover. "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 4/e" (2010).
    [74] 張榮顯, "磁力研磨應用於放電加工表面改善之研究," 國立中央大學/機械工程學系, 碩士論文 (2000)
    [75] 偕義弘, "電解與磁力研磨之複合加工應用於內壁表面改善之研究," 國立中央大學/機械工程學系, 碩士論文 (2002)
    [76] R. W. Phillips "Engineering applications of fluids with a variable yield stress," Ph.D. thesis, University of California, Berkeley (1969).
    [77] More Thomas AVRAAM, "MR-fluid brake design and its application to a portable muscular rehabilitation device", Ph.D Thesis, Université Libre de Bruxelles (2009).
    [78] LORD MRF-140CG TECHNICAL DATA (www.lordfulfillment.com)
    [79] W. Gross, L. Matsch, V. Castelli, A. Eshel, J. Vohr and M. Wildmann. "Fluid film lubrication." A Wiley-Interscience Publication (1980).
    [80] F. W. Preston. "The theory and design of plate glass polishing machines," Journal of Glass Technology 11.44 (1927): 214-256.
    [81] X. Tang, X. Zhang, and R. Tao. "Structure-enhanced yield stress of magnetorheological fluids." Journal of Applied Physics 87.5 (2000): 2634-2638.
    [82] X. Tang, X. Zhang, and R. Tao. "Enhance the yield shear stress of magnetorheological fluids." International Journal of Modern Physics B 15.06n07 (2001): 549-556..
    [83] Tao, R. "Super-strong magnetorheological fluids." Journal of Physics: Condensed Matter 13.50 (2001): R979.
    [84] Zhang, X. Z., et al. "Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids." Journal of Applied Physics 96.4 (2004): 2359-2364.
    [85] Lee Ping-Hsun, and Jen-Yuan Chang. "Design of a Magnetorheological Finishing Tool Manipulated by a Mechanical Magnetic Switch for Magnetic Field Assisted Finishing." Information Storage and Processing Systems. Vol. 59124. American Society of Mechanical Engineers, 2019.
    [86] Lee Ping-Hsun, and Jen-Yuan Chang. "A magnetic abrasive finishing (MAF) platform utilizing horizontal transverse magnetic field magnetized by permanent magnets." Microsystem Technologies 27.6 (2021): 2499-2506.
    [87] Lee Ping-Hsun, and Jen-Yuan Chang. "Design of a yield stress characterizing platform for magnetorheological fluid magnetized by permanent magnets." Microsystem Technologies 26.11 (2020): 3427-3434.
    [88] THK Technical Support Site | THK
    https://tech.thk.com/ct/products/pdf/tc_b15_006.pdf
    [89] MODEL 6010 | Gaussmeter | F.W. Bell https://fwbell.com/
    [90] SURFCOM TOUCH 35 | ACCRETECH - TOKYO SEIMITSU
    https://www.accretech.jp/english/product/measuring/surface/surfcomtouch.html
    [91] ATX224|AT Series|SHIMADZU (Shimadzu Corporation)
    https://www.shimadzu.com.tw/products/balances/analytical-balances/at-series/index.html
    [92] What is durometer? | Product | KOBUNSHI KEIKI CO.,LTD.
    https://www.asker.co.jp/en/products/durometer/analog/what-is-durometer/index.html
    [93] ASTM 2240-15e1 Standard Test Method for Rubber Property--Durometer Hardness
    https://compass.astm.org/EDIT/html_annot.cgi?D2240+15e1
    [94] Kent Larson. "Can you estimate modulus from durometer hardness for silicones." Dow Corning Corporation (2016): 1-6.
    [95] Iranthi M. Meththananda, et al. "The relationship between Shore hardness of elastomeric dental materials and Young's modulus." Dental materials 25.8 (2009): 956-959.

    QR CODE