簡易檢索 / 詳目顯示

研究生: 彭竣翔
Jyun-siang Peng
論文名稱: 高分子殘留應力與缺陷演變及電場誘發表面圖形
Residual stresses and evolution of defects in polymers with electric field-induced surface patterns
指導教授: 李三保
口試委員: 周晟
傅應凱
楊聰仁
蔣東堯
李三保
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 311
中文關鍵詞: 聚一氯對二甲苯殘留應力伽瑪輻射色心自由基電場誘發結構
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討高分子薄膜殘留應力與外加電場誘發週期性圖形及塊材輻射處理後退火行為。第一部份製備了聚一氯對二甲苯 (Parylene C)薄膜與矽微懸臂樑雙層結構。薄膜呈現連續平整且矽微懸臂樑在鍍膜後略微往上翹曲,此為薄膜與基板間熱膨脹係數不同造成。由其曲率的改變以理論推測鍍膜溫度為73 oC。薄膜與基板內的應力分布呈線性且在介面處產生不連續。第二部分為伽瑪輻射照射聚4-甲基-1-戊烯 (PMP)的色心 (color center)產生的色心湮沒 (annhilation)動力學機制,其可見光穿透率損失隨輻射累積照射劑量及退火溫度增加而增加,並產生紅位移 (bathochromic)於紫外光/可見光光譜。吸收率數據隨時間變化推測其產生過程為一級 (first order)反應。照射之聚碳酸酯 (PC)內同時存在永久及可經由退火消除的色心,後者可藉由高溫退火而湮沒。色心湮沒機制為一級反應且樣品吸收率與色心濃度成非線性正向相關 (nonlinearly proportional)。第三部分聚甲基丙烯酸甲酯 (PMMA)與聚甲基丙烯酸-2-羥基乙酯共聚物 (PHEMA)產生之自由基於升溫退火下湮沒機制,兩者均推測有三種以上自由基存在。PMMA與PHEMA的Ra與Rb自由基衰退過程為二級反應,PMMA之Rc自由基為先一級後轉為二級。長時間PHEMA的之Rc自由基衰退過程為二級反應。兩者同劑量下劑量與退火溫度,自旋濃度隨退火時間增加而下降。最後為電場誘發聚PC與PMMA薄膜不穩定產生具週期性規律的柱狀圖形。不同薄膜厚度樣品均於實驗初期即產生柱狀結構,薄膜越薄者圖形密度也越低且尺寸較小,且均隨時間增加而上升,趨勢逐漸減緩,於40分鐘後圖形穩定,成長過程與擬合曲線相符。比較不同退火溫度之薄膜穩定圖形,可得出退火溫度較高者,點狀圖形直徑較大且間距較寬。綜合以上兩因素樣品之週期性於同厚度薄膜下,退火溫度越高則週期越長;相同退火溫度下薄膜越厚則週期越長。


    In the thesis, we studied residual stresses and electric field induced patterns on polymer thin films as well as annealing behavior of polymeric materials after irradiation. In the first part, we built a Parylene C/Si bilayer cantilever structure. The Parylene C thin films were continous and flat on the top of cantilevers. Due to the mismatch of thermal expansion in this system, cantilevers curved and bent towards up. We inferred that the deposition temperature was 73 oC by observing the curvature variation. Moreover, the residual stress distribution was linear in both layers and discontinued on the interface.
    In the second part, we studied the generation kinetics of color centers in gamma ray irradiated poly(4-methyl-1 pentene) (PMP). The transmittance loss in irradiated PMP with increasing gamma ray dose and annealing temperature, and present bathochromic shift in UV/ Vis spectra. The absorptance data were found in good agreement with the first order reaction. On the other hand, the color centers of polycarbonate (PC) will annihilated at elevated temperature after irradiated. The measured absorptance data followed first order mechanism, and the absorptance was nonlinearly proportional to the concentration of annealable color centers. In the third part, we discussed the radicals annihilation of gamma ray irradiated poly(methyl methacrylate) (PMMA) and Poly(2-hydroxyethyl methacrylate) (PHEMA) at elevated temeratures. We inferred that both PMMA and PHEMA had three different radicals at least. The radicals Ra and Rb followed second order process for PMMA and PHEMA. Rc of PMMA in a short time period followed a first order decay and turned into second order in the long term. Rc of PHEMA followed second order kinetics at longer times. For a given dose and annealing temperature, the concentration of each radical decreased with time. In the last part, we investigated electric field-induced periodical pillar patterns via thin film instability of PC and PMMA. The pillar patterns grew at the initial stage of experiments for both polymers. Thepillars were smaller and less dense for thinner film, and increasing with annealing time. The growth rate was decreased gratually and steadied after forty miniutes. The process of growth were in good agreement with fitted curves. Comparing steadied patterns at different annealing temperatures,diameters and space between pillars were largerat higher annealing temperature. Combining these two factors, we concluded that the periodicity was increasing with increased annealing temperature for the films with the same thickness; the periodicity was increasing with increased film thickness for the same annealing tempaerature.

    致謝 i 摘要 iii Abstract v 第一章 緒論 1 1.1 高分子薄膜不穩定性與微結構形成 1 1.2 輻射作用與材料性質 3 1.2.1 游離輻射的研究背景 3 1.2.2 輻射作用於材料的應用 5 1.3論文內容 9 第二章 以C型聚對二甲苯/單晶矽之雙層膜結構量測殘留應力研究 24 2.1 引言 24 2.2 實驗步驟及方法 27 2.3 實驗結果與討論 30 2.3.1 光學與電子顯微鏡實驗 30 2.3.2 白光干涉儀與橫截面輪廓分析 31 2.3.3 殘留應力理論分析與探討 32 2.3.4 奈米級歐傑電子能譜儀 37 2.4 結論 37 第三章 加馬輻射照射之聚4-甲基-1-戊烯的色心產生與聚碳酸酯的色心湮沒動力學研究 62 3.1 引言 62 3.1.1 聚4-甲基-1-戊烯相關研究背景 62 3.1.2 聚碳酸酯相關研究背景 64 3.2 實驗步驟及方法 66 3.3 實驗結果與討論 68 3.3.1 聚4-甲基-1-戊烯色心產生之動力學實驗結果 68 3.3.2聚碳酸酯色心湮沒之動力學實驗結果 73 3.4 結論 78 第四章 聚甲基丙烯酸甲酯與聚甲基丙烯酸-2-羥基乙酯共聚物經加馬輻射照射後自由基於升溫退火下湮沒機制研究 96 4.1 引言 96 4.1.1 聚甲基丙烯酸甲酯相關研究背景 96 4.1.2 聚甲基丙烯酸-2-羥基乙酯共聚物相關研究背景 99 4.2 實驗步驟及方法 101 4.3 實驗結果與討論 104 4.3.1 聚甲基丙烯酸甲酯升溫退火產生之自由基衰退機制探討 104 4.3.2 聚甲基丙烯酸-2-羥基乙酯共聚物升溫退火產生之自由基衰退機制探討 114 4.4 結論 118 第五章 外加電場引發聚碳酸酯與聚甲基丙烯酸甲酯產生週期性柱狀結構研究 143 5.1 引言 143 5.2 實驗步驟及方法 146 5.2.1 實驗材料 146 5.2.2 樣品製備 147 5.2.3 實驗分析 150 5.3 實驗結果與討論 153 5.3.1熱分析實驗 153 5.3.2傅立葉轉換紅外光譜分析 155 5.3.3不同厚度與退火時間於薄膜結構形成 155 5.3.4退火溫度與時間於薄膜結構形成 157 5.3.5電場與退火時間於薄膜結構形成 159 5.4 結論 164 第六章 結論與未來展望 247 附錄A 消防員防護衣外層布料於紫外光環境下及高於室溫條件下老化對其機械與光譜性質研究 252 A.1研究簡介與文獻回顧 252 A.1.1 消防員防火衣料簡介 252 A.1.2相關文獻回顧 254 A.1.3研究動機 255 A.2實驗步驟及方法 256 A.2.1測試之防火布料簡介 256 A.2.2實驗流程 257 A.2.3實驗儀器及參數 258 A.3結果與討論 262 A.3.1全反射式傅立葉轉換紅外光譜 262 A.3.2穿透式紫外光譜儀 265 A.3.3撕裂測試 267 A.3.4拉伸強度測試 269 A.3.5雷射掃描共軛焦顯微影像 270 A.4結論 271

    chapter 1
    [1] P.G. Saffman, G. Taylor, The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, Proc. R. Soc. Lond. A, 245 (1958) 312-329.
    [2] A. Lindner, P. Coussot, D. Bonn, Viscous Fingering in a Yield Stress Fluid, Phys. Rev. Lett., 85 (2000) 314-317.
    [3] H.C. Scheer, H. Schulz, A contribution to the flow behaviour of thin polymer films during hot embossing lithography, Microelectronic Engineering, 56 (2001) 311-332.
    [4] H. Schift, L.J. Heyderman, M.A.d. Maur, J. Gobrecht, Pattern formation in hot embossing of thin polymer films, Nanotechnology, 12 (2001).
    [5] S.Y. Chou, L. Zhuang, Lithographically induced self-assembly of periodic polymer micropillar arrays, Journal of Vacuum Science & Technology B, 17 (1999) 3197-3202.
    [6] S.Y. Chou, L. Zhuang, L. Guo, Lithographically induced self-construction of polymer microstructures for resistless patterning, Applied Physics Letters, 75 (1999) 1004-1006.
    [7] N. Wu, W.B. Russel, Electrohydrodynamic Instability of Dielectric Bilayers:  Kinetics and Thermodynamics, Ind. Eng. Chem. Res., 45 (2006) 5455-5465.
    [8] R. Verma, A. Sharma, K. Kargupta, J. Bhaumik, Electric Field Induced Instability and Pattern Formation in Thin Liquid Films, Langmuir, 21 (2005) 3710-3721.
    [9] P. Goldberg-Oppenheimer, D. Kabra, S. Vignolini, S. Hüttner, M. Sommer, K. Neumann, M. Thelakkat, U. Steiner, Hierarchical Orientation of Crystallinity by Block-Copolymer Patterning and Alignment in an Electric Field, Chem. Mater., 25 (2013) 1063-1070.
    [10] N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, 393 (1998) 146-149.
    [11] N. Bowden, W.T.S. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Applied Physics Letters, 75 (1999) 2557-2559.
    [12] E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Electrically induced structure formation and pattern transfer, Nature, 403 (2000) 874-877.
    [13] E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Electrohydrodynamic instabilities in polymer films, EPL, 53 (2001).
    [14] E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, U. Steiner, Morphological Instability of a Confined Polymer Film in a Thermal Gradient, Macromolecules, 36 (2003) 1645-1655.
    [15] E. Schäffer, S. Harkema, R. Blossey, U. Steiner, Temperature-gradient–induced instability in polymer films, EPL, 60 (2002).
    [16] E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, U. Steiner, Thermomechanical Lithography: Pattern Replication Using a Temperature Gradient Driven Instability, Adv. Mater., 15 (2003) 514-517.
    [17] J. Peng, Y. Han, Y. Yang, B. Li, Pattern formation in polymer films under the mask, Polymer, 44 (2003) 2379-2384.
    [18] E. Schäffer, U. Steiner, Acoustic instabilities in thin polymer films, Eur. Phys. J. E, 8 (2002) 347-351.
    [19] M.D. Morariu, E. Schäffer, U. Steiner, Molecular Forces Caused by the Confinement of Thermal Noise, Phys. Rev. Lett., 92 (2004).
    [20] M.D. Morariu, E. Schäffer, U. Steiner, Capillary instabilities by fluctuation induced forces, Eur. Phys. J. E, 12 (2003) 375-381.
    [21] J. Huang, M. Juszkiewicz, W.H.d. Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Capillary Wrinkling of Floating Thin Polymer Films, Science, 317 (2007) 650-653.
    [22] A. Ghatak, M.K. Chaudhury, V. Shenoy, A. Sharma, Meniscus Instability in a Thin Elastic Film, Phys. Rev. Lett., 85 (2000) 4329-4332.
    [23] W. Mönch, S. Herminghaus, Elastic instability of rubber films between solid bodies, EPL, 53 (2001).
    [24] A. Ghatak, M.K. Chaudhury, Adhesion-Induced Instability Patterns in Thin Confined Elastic Film, Langmuir, 19 (2003) 2621-2631.
    [25] A. Ghatak, Confinement-induced instability of thin elastic film, Phys. Rev. E, 73 (2006).
    [26] V. Shenoy, A. Sharma, Pattern Formation in a Thin Solid Film with Interactions, Phys. Rev. Lett., 86 (2001) 119-122.
    [27] J. Sarkar, V. Shenoy, A. Sharma, Spontaneous surface roughening induced by surface interactions between two compressible elastic films, Phys. Rev. E, 67 (2003).
    [28] J.Y. Chung, K.H. Kim, M.K. Chaudhury, J. Sarkar, A. Sharma, Confinement-induced instability and adhesive failure between dissimilar thin elastic films, Eur. Phys. J. E, 20 (2006) 47-53.
    [29] J. Sarkar, V. Shenoy, A. Sharma, Patterns, Forces, and Metastable Pathways in Debonding of Elastic Films, Phys. Rev. Lett., 93 (2004).
    [30] M. Gonuguntla, A. Sharma, J. Sarkar, S.A. Subramanian, M. Ghosh, V. Shenoy, Contact Instability in Adhesion and Debonding of Thin Elastic Films, Phys. Rev. Lett., 97 (2006).
    [31] G. Tomar, A. Sharma, V. Shenoy, G. Biswas, Surface instability of confined elastic bilayers: Theory and simulations, Phys. Rev. E, 76 (2007).
    [32] M.D. Morariu, N.E. Voicu, E. Schäffer, Z. Lin, T.P. Russell, U. Steiner, Hierarchical structure formation and pattern replication induced by an electric field, Nat Mater, 2 (2003) 48-52.
    [33] K. Makuuchi, V. Markovic, Radiation processing of natural rubber latex, IAEA Bulletin, 33 (1991) 25-28.
    [34] M. Behr, M. Rosentritt, A. Faltermeier, G. Handel, Electron beam irradiation of dental composites, Dental Materials, 21 (2005) 804-810.
    [35] B. Jiang, Z. Wu, H. Zhao, F. Tang, J. Lu, Q. Wei, X. Zhang, Electron beam irradiation modification of collagen membrane, Biomaterials, 27 (2006) 15-23.
    [36] O.N. Tretinnikov, S. Ogata, Y. Ikada, Surface crosslinking of polyethylene by electron beam irradiation in air, Polymer, 39 (1998) 6115-6120.
    [37] D. Aronov, G. Rosenman, Surface energy modification by electron beam, Surface Science, 601 (2007) 5042-5049.
    [38] S. Satapathy, A. Nag, G.B. Nando, Effect of electron beam irradiation on the mechanical, thermal, and dynamic mechanical properties of flyash and nanostructured fly ash waste polyethylene hybrid composites, Polym Compos, 33 (2012) 109-119.
    [39] M. Abdul Samad, S.K. Sinha, Effects of counterface material and UV radiation on the tribological performance of a UHMWPE/CNT nanocomposite coating on steel substrates, Wear, 271 (2011) 2759-2765.
    [40] P. Petrov, E. Petrova, C.B. Tsvetanov, UV-assisted synthesis of super-macroporous polymer hydrogels, Polymer, 50 (2009) 1118-1123.
    [41] M.V. Cristea, B. Riedl, P. Blanchet, Effect of addition of nanosized UV absorbers on the physico-mechanical and thermal properties of an exterior waterborne stain for wood, Progress in Organic Coatings, 72 (2011) 755-762.
    [42] N. Fortin, B. Albela, L. Bonneviot, S. Rouif, J.-Y. Sanchez, D. Portinha, E. Fleury, How does γ-irradiation affect the properties of a microfiltration membrane constituted of two polymers with different radiolytic behavior?, Radiation Physics and Chemistry, 81 (2012) 331-338.
    [43] A. Henglein, Crosslinking of polymers in solution under the influence of gamma radiation, The Journal of Physical Chemistry, 63 (1959) 1852-1858.
    [44] A. Dufresne, L. Reche, R.H. Marchessault, M. Lacroix, Gamma-ray crosslinking of poly (3-hydroxyoctanoate-co-undecenoate), International journal of biological macromolecules, 29 (2001) 73-82.
    [45] J.S. Peng, K.F. Chou, C.L. Li, S. Lee, Generation kinetics of color centers in irradiated poly(4-methyl-1-pentene), Journal of Applied Physics, 110 (2011).
    [46] Y.-S. Lin, L.-J. Ming, J.S. Peng, Y.-K. Fu, S. Lee, Radical annihilation of γ-ray-irradiated contact lens blanks made of a 2-hydroxyethyl methacrylate copolymer at elevated temperatures, Journal of Applied Polymer Science, (2010) n/a-n/a.
    [47] J.S. Peng, C.M. Hsu, S.H. Yeh, S. Lee, Annihilation kinetics of color center in polycarbonate irradiated with gamma ray at elevated temperatures, Polymer Engineering & Science, 52 (2012) 2391-2395.
    [48] J.S. Peng, L.-J. Ming, Y.-S. Lin, S. Lee, EPR study of radical annihilation kinetics of γ-ray-irradiated acrylic (PMMA) at elevated temperatures, Polymer, 52 (2011) 6090-6096.
    [49] A.J. Berejka, D. Montoney, M.R. Cleland, L. Loiseau, Radiation curing: coatings and composites, Nukleonika, Vol. 55, No. 1 (2010) 97-106.
    [50] D. Foix, X. Ramis, A. Serra, M. Sangermano, UV generation of a multifunctional hyperbranched thermal crosslinker to cure epoxy resins, Polymer, 52 (2011) 3269-3276.
    [51] W. Brenner, W.F. Oliver, Commercial Aspects of Instantaneous Radiation Cure of Reinforced Plastics, Reinf. Plast. (London), 11: 294-7 306(June 1967). (1967).
    [52] F. Campbell, B. Rugg, W. Brenner, Electron-Beam Curing of Vinyl Ester Adhesives - Tests Indicate High-Temperature Strength Improved, Adhes. Age, 21 (1978) 41-42.
    [53] F. Campbell, B. Rugg, R. Kumar, J. Arnon, W. Brenner, Environmental Aging Studies of Electron-Beam-Cured Adhesives, Adhes. Age, 22 (1979) 40-42.
    [54] R. Bongiovanni, A. Medici, A. Zompatori, S. Garavaglia, C. Tonelli, Perfluoropolyether polymers by UV curing: design, synthesis and characterization, Polymer International, 61 (2012) 65-73.
    [55] N. McCusker, C. Bailey, S. Robinson, N. Patel, J.R. Sandy, A.J. Ireland, Dental light curing and its effects on color perception, American Journal of Orthodontics and Dentofacial Orthopedics, 142 (2012) 355-363.
    [56] F.A. Rueggeberg, State-of-the-art: Dental photocuring—A review, Dental Materials, 27 (2011) 39-52.
    [57] Z. Ma, Z. Mao, C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids and Surfaces B: Biointerfaces, 60 (2007) 137-157.
    [58] Y. Ikada, Surface modification of polymers for medical applications, Biomaterials, 15 (1994) 725-736.
    [59] M. Marquez, B.P. Grady, I. Robb, Different methods for surface modification of hydrophilic particulates with polymers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 266 (2005) 18-31.
    [60] H. Dong, T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surface and Coatings Technology, 111 (1999) 29-40.
    [61] R.A. Quirk, M.C. Davies, S.J.B. Tendler, W.C. Chan, K.M. Shakesheff, Controlling Biological Interactions with Poly(lactic acid) by Surface Entrapment Modification, Langmuir, 17 (2001) 2817-2820.
    [62] M. Pascu, C. Vasile, M. Gheorghiu, Modification of polymer blend properties by argon plasma/electron beam treatment: surface properties, Materials Chemistry and Physics, 80 (2003) 548-554.
    [63] S.-H. Choo, S. Lee, M.G. Golkovski, Effects of accelerated electron beam irradiation on surface hardening and fatigue properties in an AISI 4140 steel used for automotive crankshaft, Materials Science and Engineering: A, 293 (2000) 56-70.
    [64] X.D. Zhang, S.Z. Hao, X.N. Li, C. Dong, T. Grosdidier, Surface modification of pure titanium by pulsed electron beam, Applied Surface Science, 257 (2011) 5899-5902.
    [65] D. Aronov, R. Rosen, E.Z. Ron, G. Rosenman, Electron-induced surface modification of hydroxyapatite-coated implant, Surface and Coatings Technology, 202 (2008) 2093-2102.
    [66] D. Leonhardt, C. Muratore, S.G. Walton, D.D. Blackwell, R.F. Fernsler, R.A. Meger, Generation of electron-beam produced plasmas and applications to surface modification, Surface and Coatings Technology, 177-178 (2004) 682-687.
    [67] V.P. Rotshtein, D.I. Proskurovsky, G.E. Ozur, Y.F. Ivanov, A.B. Markov, Surface modification and alloying of metallic materials with low-energy high-current electron beams, Surface and Coatings Technology, 180-181 (2004) 377-381.
    [68] A. Oshima, F. Shiraki, H. Fujita, M. Washio, Surface modification of polymeric materials using ultra low energy electron beam irradiation, Radiation Physics and Chemistry, 80 (2011) 196-200.
    [69] S.-J. Cho, H.J. Kim, B. Hong, J.-H. Boo, A study on the plasma polymer thin film surface modification for DNA alignment by using high energy electron beam irradiation, Thin Solid Films, 519 (2011) 7060-7064.
    [70] M.-L. Cairns, G.R. Dickson, J.F. Orr, D. Farrar, K. Hawkins, F.J. Buchanan, Electron-beam treatment of poly(lactic acid) to control degradation profiles, Polymer Degradation and Stability, 96 (2011) 76-83.
    [71] H. Sewell, 200nm deep-UV lithography using step-and-scan, Microelectronic engineering, 35 (1997) 177-183.
    [72] A. Gruhle, F. Lalanne, J.P. Panabiere, Deep-UV lithography mask fabrication with 200nm feature size using a liftoff technique, Microelectronic Engineering, 13 (1991) 217-220.
    [73] H. Takemura, H. Ohki, H. Nakazawa, Y. Nakagawa, M. Isobe, Y. Ochiai, T. Ogura, M. Narihiro, T. Mogami, Performance of new E-beam lithography system JBX-9300FS, Microelectronic Engineering, 53 (2000) 329-332.
    [74] C. Pierrat, S. Tedesco, F. Vinet, T. Mourier, M. Lerme, B. Dal'Zotto, J.C. Guibert, PRIME process for deep UV and e-beam lithography, Microelectronic engineering, 11 (1990) 507-514.
    [75] D.K. Allison, R.R. Hart, The application of channeling to masked ion beam lithography, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 56 (1991) 789-791.
    [76] K. Gamo, Focused ion beam technology, Vacuum, 42 (1991) 89-93.
    [77] V.A. Kudryashov, S. Lee, A new ‘2D to 3D’ X-ray lithography technology for gray scale structures, Microelectronic Engineering, 57–58 (2001) 819-823.
    [78] F. Romanato, X-ray lithography for 3D microfluidic applications, Microelectronic Engineering, 73-74 (2004) 870-875.
    [79] A. Yen, M. Burkhardt, J.R. Ilzhoefer, R.G. Fleck, H. Du, J. Randall, Optical proximity correction and its application to CD control in high-speed microprocessors, Microelectronic Engineering, 41–42 (1998) 65-70.
    [80] P. Jedrasik, Neural networks application for OPC (optical proximity correction) in mask making, Microelectronic Engineering, 30 (1996) 161-164.
    [81] B.J. Lin, The optimum numerical aperture for attenuated phase-shifting masks, Microelectronic Engineering, 17 (1992) 79-85.
    [82] Z. Hostounský, R. Pelc, An efficient way of high-contrast, quasi-3D cellular imaging: Off-axis illumination, Journal of Biochemical and Biophysical Methods, 68 (2006) 23-30.
    [83] Y. Sohda, H. Ohta, F. Murai, J. Yamamoto, H. Kawano, H. Satoh, H. Itoh, Recent progress in cell-projection electron-beam lithography, Microelectronic engineering, 67 (2003) 78-86.
    chapter 2
    [1] H.J. Butt, A sensitive method to measure changes in the surface stress of solids, J. Colloid Interface Sci., 180 (1996) 251-260.
    [2] H.P. Lang, M.K. Baller, R. Berger, C. Gerber, J.K. Gimzewski, F.M. Battiston, P. Fornaro, J.P. Ramseyer, E. Meyer, H.J. Guntherodt, An artificial nose based on a micromechanical cantilever array, Anal. Chim. Acta, 393 (1999) 59-65.
    [3] J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski, Translating biomolecular recognition into nanomechanics, Science, 288 (2000) 316-318.
    [4] C. O'Mahony, M. Hill, R. Duane, A. Mathewson, Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams, J. Micromech. Microeng., 13 (2003) S75-80.
    [5] S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams, J. Sound. Vib., 322 (2009) 969-986.
    [6] H. Sadeghian, G. Rezazadeh, Comparison of generalized differential quadrature and Galerkin methods for the analysis of micro-electro-mechanical coupled systems, Commun. Nonlinear. Sci. Numer. Simul., 14 (2009) 2807-2816.
    [7] B. Wang, S. Zhou, J. Zhao, X. Chen, Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS, J. Micromech. Microeng., 21 (2011) 1-6.
    [8] S. Pamidighantam, R. Puers, K. Baert, H.A.C. Tilmans, Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions, J. Micromech. Microeng., 12 (2002) 458-462.
    [9] R.T. Chen, H. Nguyen, M.C. Wu, A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch, Photonics Technology Letters, IEEE, 11 (1999) 1396-1398.
    [10] R.F. Wolffenbuttel, MEMS-based optical mini-and microspectrometers for the visible and infrared spectral range, J. Micromech. Microeng., 15 (2005) S145-152.
    [11] H. Rokni, W. Lu, Effect of Graphene Layers on Static Pull-in Behavior of Bilayer Graphene/Substrate Electrostatic Microactuators, J. Microelectromech. Syst., PP (2012) 1-7.
    [12] Y. Zhang, Y. Zhang, R.B. Marcus, Thermally actuated microprobes for a new wafer probe card, J. Microelectromech. Syst., 8 (1999) 43-49.
    [13] W. Fang, J.A. Wickert, Determining mean and gradient residual stresses in thin films using micromachined cantilevers, J. Micromech. Microeng., 6 (1999) 301-309.
    [14] C.-H. Hsueh, Modeling of elastic deformation of multilayers due to residual stresses and external bending, J. Appl. Phys., 91 (2002) 9652-9656.
    [15] R. Koch, The intrinsic stress of polycrystalline and epitaxial thin metal films, J. Phys.: Condens. Matter, 6 (1999) 9519-9550.
    [16] S.G. Mayr, K. Samwer, Model for intrinsic stress formation in amorphous thin films, Phys. Rev. Lett., 87 (2001) 036105-036101-036104.
    [17] W.D. Nix, B.M. Clemens, Crystallite coalescence- A mechanism for intrinsic tensile stresses in thin films, J. Mater. Res., 14 (1999) 3467-3473.
    [18] R.C. Cammarata, T.M. Trimble, D.J. Srolovitz, Surface stress model for intrinsic stresses in thin films, J. Mater. Res., 15 (2000) 2468-2474.
    [19] W. Fang, J.A. Wickert, Comments on measuring thin-film stresses using bi-layer micromachined beams, J. Micromech. Microeng., 5 (1995) 276-281.
    [20] Y.H. Min, Y.K. Kim, In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers, J. Micromech. Microeng., 10 (2000) 314-321.
    [21] T.-Y. Zhang, S. Lee, L.J. Guido, C.-H. Hsueh, Criteria for formation of interface dislocations in a finite thickness epilayer deposited on a substrate, J. Appl. Phys., 85 (1999) 7579-7586.
    [22] Y.B. Gianchandani, K. Najafi, Bent-beam strain sensors, J. Microelectromech. Syst., 5 (1996) 52-58.
    [23] F. Ericson, S. Greek, J. Soderkvist, J.A. Schweitz, High-sensitivity surface micromachined structures for internal stress and stress gradient evaluation, J. Micromech. Microeng., 7 (1997) 30-36.
    [24] H. Guckel, D. Burns, C. Rutigliano, E. Lovell, B. Choi, Diagnostic microstructures for the measurement of intrinsic strain in thin films, J. Micromech. Microeng., 2 (1999) 86-95.
    [25] H. Guckel, T. Randazzo, D. Burns, A Simple Technique for the Determination of Mechanical Strain in Thin-Films with Applications to Polysilicon, J. Appl. Phys., 57 (1985) 1671-1675.
    [26] L. Zhang, D. Uttamchandani, B. Culshaw, Measurement of the Mechanical-Properties of Silicon Microresonators, Sens. Actuat. A: Phys., 29 (1991) 79-84.
    [27] Q. Zou, Z. Li, L. Liu, New methods for measuring mechanical properties of thin films in micromachining: Beam pull-in voltage (VPI) method and long beam deflection (LBD) method, Sens. Actuat. A: Phys., 48 (1995) 137-143.
    [28] E. Meng, P.-Y. Li, Y.-C. Tai, Plasma removal of Parylene C, J. Micromech. Microeng., 18 (2008) 1-13.
    [29] D. Wright, B. Rajalingam, J.M. Karp, S. Selvarasah, Y. Ling, J. Yeh, R. Langer, M.R. Dokmeci, A. Khademhosseini, Reusable, reversibly sealable parylene membranes for cell and protein patterning, J. Biomed. Mat. Res Part A, 85 (2008) 530-538.
    [30] J. Bienkiewicz, Plasma-Enhanced Parylene Coating, Med. Dev. Technol., 17 (2006) 2-3.
    [31] H.-S. Noh, K.-S. Moon, A. Cannon, P.J. Hesketh, C.P. Wong, Wafer bonding using microwave heating of parylene intermediate layers, J. Micromech. Microeng., 14 (2004) 625-631.
    [32] E.M. Schmidt, M.J. Bak, P. Christensen, Laser exposure of Parylene-C insulated microelectrodes, J. Neurosci. Meth., 62 (1995) 89-92.
    [33] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. Lond., Ser. A, 82 (1909) 172-175.
    [34] K. Röll, Analysis of stress and strain distribution in thin films and substrates, J. Appl. Phys., 47 (1976) 3224-3229.
    [35] M. Benabdi, A.A. Roche, Mechanical properties of thin and thick coatings applied to various substrates. Part I. An elastic analysis of residual stresses within coating materials, J. Adhes. Sci. Technol., 11 (1997) 281-299.
    [36] S. Huang, X. Zhang, Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications, J. Micromech. Microeng., 16 (2006) 382-389.
    [37] Y.Y. Lin, A reexamination of residual stresses in thin films and of the validity of Stoney's estimate, J. Electron. Packag., 122 (2000) 267-273.
    [38] X. Yang, C. Grosjean, Y.C. Tai, Design, fabrication, and testing of micromachined silicone rubber membrane valves, J. Microelectromech. Syst., 8 (1999) 393-402.
    [39] T.A. Harder, T.J. Yao, Q. He, C.Y. Shih, Y.C. Tai, I. Ieee, Residual stress in thin-film parylene-c, in: Fifteenth Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest, 2002, pp. 435-438.
    [40] C.Y. Shih, T.A. Harder, Y.C. Tai, Yield strength of thin-film parylene-C, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 10 (2004) 407-411.
    [41] J.-M. Hsu, S. Kammer, E. Jung, L. Rieth, R.A. Normann, F. Solzbacher, Characterization of Parylene-C film as an encapsulation material for neural interface devices, Dimov S, Menz W, Toshev Y (eds), 4 (2007).
    [42] http://cnmm.web.nthu.edu.tw/files/15-1012-9503,c2045-1.php.
    [43] C.-H. Hsueh, S. Lee, Effects of viscous flow on residual stresses in film/substrate systems, J. Appl. Phys., 91 (2002) 2760-2765.
    [44] K. Fukuda, T. Suzuki, D. Kumaki, S. Tokito, Reverse DC bias stress shifts in organic thin-film transistors with gate dielectrics using parylene-C, Phys. Status Solidi, 209 (2012) 2073-2077.
    [45] C.-H. Hsueh, S. Lee, H.-Y. Lin, Analyses of mode I edge delamination by thermal stresses in multilayer systems, Compos. Part B-Eng., 37 (2006) 1-9.
    [46] G. Abadal, Z.J. Davis, B. Helbo, X. Borrisé, R. Ruiz, A. Boisen, F. Campabadal, J. Esteve, E. Figueras, F. Pérez-Murano, N. Barniol, Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection, Nanotechnology, 12 (2001) 100-104.
    chapter 3
    [1] A.C. Puleo, D.R. Paul, P.K. Wong, Gas sorption and transport in semicrystalline poly (4-methyl-1-pentene), Polymer, 30 (1989) 1357-1366.
    [2] F. Müller-Plathe, Unexpected diffusion behavior of gas molecules in crystalline poly (4-methyl-1-pentene), The Journal of chemical physics, 103 (1995) 4346-4346.
    [3] J.M. Mohr, D.R. Paul, Effect of casting solvent on the permeability of poly (4-methyl-1-pentene), Polymer, 32 (1991) 1236-1243.
    [4] A. Danch, A. Gadomski, On the crystalline-amorphous supermolecular structure of poly (4-methyl-1-pentene) films cast from solution: experimental evidences and theoretical remarks, Journal of Molecular Liquids, 86 (2000) 249-257.
    [5] A. Danch, A. Gadomski, On thermal properties of poly (4-methyl-1-pentene) membranes cast from solution, Journal of Thermal Analysis and Calorimetry, 45 (1995) 1175-1181.
    [6] C. De Rosa, D. Capitani, S. Cosco, Solid-State 13C Nuclear Magnetic Resonance Spectra of Four Crystalline Forms of Isotactic Poly (4-methyl-1-pentene), Macromolecules, 30 (1997) 8322-8331.
    [7] D. Zanuy, C. Alemán, S. Mu\ noz-Guerra, Crystalline poly (4-methyl-1-pentene): Structure and solubility of gas molecules, Journal of Polymer Science Part B: Polymer Physics, 40 (2002) 2037-2049.
    [8] E. James Jebaseelan Samuel, S. Mohan, FTIR and FT Raman spectra and analysis of poly (4-methyl-1-pentene), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (2004) 19-24.
    [9] S.D. Wanjale, J.P. Jog, Poly (4-methyl-1-pentene)/clay nanocomposites: effect of organically modified layered silicates, Polymer international, 53 (2004) 101-105.
    [10] L.M. Clayton, T.G. Gerasimov, M. Cinke, M. Meyyappan, J.P. Harmon, Dispersion of single-walled carbon nanotubes in a non-polar polymer, poly(4-methyl-1-pentene), J Nanosci Nanotechnol, 6 (2006) 2520-2524.
    [11] Y.S. Soebianto, F. Yoshii, K. Makuuchi, I. Ishigaki, Radiation grafting of hydrophilic monomers onto poly (4-methylpentene-1), I. Grafting of acrylic acid, Die Angewandte Makromolekulare Chemie, 149 (1987) 87-99.
    [12] O. Yazici, F. Cakar, O. Cankurtaran, F. Karaman, Determination of crystallinity ratio and some physicochemical properties of poly(4-methyl-1-pentene), Journal of Applied Polymer Science, 113 (2009) 901-906.
    [13] S. Chen, J. Jin, J. Zhang, Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1), Journal of Thermal Analysis and Calorimetry, 103 (2010) 229-236.
    [14] J.S. Wallace, M.B. Sinclair, K.T. Gillen, R.L. Clough, Color center annealing in γ - irradiated polystyrene, under vacuum and air atmospheres, Radiation Physics and Chemistry, 41 (1993) 85-100.
    [15] C.K. Liu, C.J. Tsai, C.T. Hu, S. Lee, Annihilation kinetics of color center in irradiated syndiotactic polystyrene at elevated temperatures, Polymer, 46 (2005) 5645-5655.
    [16] R.L. Clough, K.T. Gillen, G.M. Malone, J.S. Wallace, Color formation in irradiated polymers, Radiation Physics and Chemistry, 48 (1996) 583-594.
    [17] R.L. Clough, G.M. Malone, K.T. Gillen, J.S. Wallace, M.B. Sinclair, Discoloration and subsequent recovery of optical polymers exposed to ionizing radiation, Polymer degradation and Stability, 49 (1995) 305-313.
    [18] J.P. Harmon, J.F. Gaynor, The effect of gamma irradiation on color center formation in optical polymers, Journal of Polymer Science Part B: Polymer Physics, 31 (1993) 235-236.
    [19] J.P. Harmon, J.F. Gaynor, A.G. Taylor, Approaches to optimize scintillator polymers for optical radiation hardness, Radiation Physics and Chemistry, 41 (1993) 153-164.
    [20] E. Biagtan, E. Goldberg, R. Stephens, J. Harmon, ESR analysis of gamma radiation dose rate effects on scintillator light output, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 114 (1996) 302-306.
    [21] A. Factor, J.C. Carnahan, S.B. Dorn, P.C. Van Dort, The chemistry of [gamma]-irradiated bisphenol-A polycarbonate, Polymer Degradation and Stability, 45 (1994) 127-137.
    [22] J.P. Harmon, A.G. Taylor, G.T. Schueneman, E.P. Goldberg, Stability of UV/visible transmission spectra of cross-linked poly(methylphenylsiloxane) after gamma irradiation--A note, Polymer Degradation and Stability, 41 (1993) 319-322.
    [23] K.P. Lu, S. Lee, C.C. Han, Transmission in irradiated hydroxyethyl methacrylate copolymer at elevated temperatures, Journal of materials research, 17 (2002) 2260-2265.
    [24] E.S. Araújo, H.J. Khoury, S.V. Silveira, Effects of gamma-irradiation on some properties of durolon polycarbonate, Radiation Physics and Chemistry, 53 (1999) 79-84.
    [25] T. Seguchi, T. Yagi, S. Ishikawa, Y. Sano, New material synthesis by radiation processing at high temperature-polymer modification with improved irradiation technology, Radiation Physics and Chemistry, 63 (2002) 35-40.
    [26] Y. Wang, Y. Jin, Z. Zhu, C. Liu, Y. Sun, Z. Wang, M. Hou, X. Chen, C. Zhang, J. Liu, B. Li, Chemical modification of polycarbonate induced by 1.4 GeV Ar ions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 164-165 (2000) 420-424.
    [27] S. Singh, S. Prasher, The optical, chemical and spectral response of gamma-irradiated Lexan polymeric track recorder, Radiation Measurements, 40 (2005) 50-54.
    [28] Neerja X, S. Prasher, S. Singh, The effect of gamma irradiation on the activation energy of bulk and track etching in Lexan track detector, Radiation Measurements, 42 (2007) 135-137.
    [29] S. Singh, X. Neerja, Gamma-induced changes in the activation energy of bulk and track etching in Makrofol-KG plastics track recorder, Radiation Effects and Defects in Solids, 161 (2006) 377-381.
    [30] J.A. Sapkal, P.C. Kalsi, C. Agarwal, M. Thanamani, S. Murali, The etching and optical response of Tuffak polycarbonate nuclear track detector to gamma irradiation, Radiation Physics and Chemistry, 78 (2009) 81-84.
    [31] S.A. Nouh, A.A. Naby, Effect of gamma and laser radiations on the thermal properties of Makrofol nuclear track detector, Radiation Effects & Defects in Solids, 162 (2007) 109-116.
    [32] M. Vujisić, K. Stanković, E. Dolićanin, J. Jonanović, Radiation effects in polycarbonate capacitors, Nuclear Technology and Radiation Protection, 24 (2009) 209-209.
    [33] B. Du, H. Liu, The application of recurrence plot in DC tracking test of gamma-ray irradiated polycarbonate, IEEE Transactions on Dielectrics and Electrical Insulation, 16 (2009) 17-23.
    [34] R.P. Weber, K.S. Vecchio, J.C.M. Suarez, Dynamic behavior of gamma-irradiated polycarbonate, Revista Matéria, 15 (2010) 218-224.
    [35] W.B. Fowler, Physics of color centers, Academic Press, New York, 1968.
    [36] C. Kittel, Introduction to solid state physics, Wiley, New York, 1991.
    [37] H.Y. Lin, Y.Z. Tsai, S. Lee, Evolution of Hardness and Transmittance in Irradiated LiF Single Crystals at Elevated Temperatures, Journal of Materials Research, 7 (1992) 2833-2839.
    [38] D. Sugak, A. Matkovskii, A. Durygin, A. Suchocki, I. Solskii, S. Ubizskii, K. Kopczynski, Z. Mierczyk, P. Potera, Influence of color centers on optical and lasing properties of the gadolinium gallium garnet single crystals doped with Nd3+ ions, Journal of Luminescence, 82 (1999) 9-15.
    [39] Q. Deng, Z. Yin, R.Y. Zhu, Radiation-induced color centers in La-doped PbWO4 crystals, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 438 (1999) 415-420.
    [40] J.S. Nadeau, W.G. Johnston, Hardening of lithium fluoride crystals by irradiation, Journal of Applied Physics, 32 (1961) 2563-2563.
    [41] C.L. Li, The kinetic processes of color center and void growth of the polymers, in, 2004.
    [42] S.H. Yeh, Evolution of Hardness and Transmittance in Irradiated Polycarbonate (PC), in, 2001.
    [43] P. Shewmon, Diffusion in Solids, Wiley, 1989.
    [44] K.F. Chou, C.C. Han, S. Lee, Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by γ rays in air and related phenomena, Journal of Polymer Science Part B: Polymer Physics, 38 (2000) 659-671.
    [45] I.J. Chiang, C.T. Hu, S. Lee, Isothermal annealing of color centers in irradiated polystyrene in vacuum and air atmospheres, Materials Chemistry and Physics, 70 (2001) 61-63.
    [46] K.P. Lu, S. Lee, C.P. Cheng, Transmittance in irradiated poly(methyl methacrylate) at elevated temperatures, Journal of Applied Physics, 88 (2000) 5022-5022.
    chapter 4
    [1] H.J. Chung, Q. Liu, Effect of Gamma Irradiation on Molecular Structure and Physicochemical Properties of Corn Starch, Journal of Food Science, 74 (2009) C353-C361.
    [2] S. Lotfy, Controlling degradation of low-molecular-weight natural polymer "dextrin" using gamma irradiation, International Journal of Biological Macromolecules, 44 (2009) 57-63.
    [3] M. De Kerf, W. Mondelaers, P. Lahorte, C. Vervaet, J.P. Remon, Characterisation and disintegration properties of irradiated starch, International Journal of Pharmaceutics, 221 (2001) 69-76.
    [4] K.A. El-Farahaty, A.M. Sadik, A.M. Hezma, -Irradiation Effects on Opto-Thermal and -Mechanical Properties of PET and PETG Fibers, International Journal of Polymeric Materials, 58 (2009) 366-383.
    [5] S.M.R. Aghamiri, M. Namedanian, Z. Sanjabi, Effect of gamma irradiation on the light polarization variation of PMMA polymer, Optics Communications, 281 (2008) 356-359.
    [6] M. Medhat, S.Y. El-Zaiat, S.M. Abdou, A. Radi, M.F. Omar, Interferometric determination of gamma radiation effects on optical parameters of a GRIN optical fibre, Journal of Optics a-Pure and Applied Optics, 4 (2002) 485-490.
    [7] I.M. Fouda, H.M. Shabana, Opto-mechanical properties of fibres. Part 3. Structural characterization of uniaxial orientation in drawn poly(ethylene terephthalate) by means of optical parameters, Polymer International, 48 (1999) 198-204.
    [8] M. Hatada, Y. Sakamoto, A. Katanosaka, Coloration of pentacosadiynoic acid polycrystalline powder dispersed in polymer layer by gamma-ray irradiation and UV illumination, Journal of Photopolymer Science and Technology, 15 (2002) 741-747.
    [9] D.G. Campbell, P. Li, A.J. Stephenson, R.D. Oakeshott, Sterilization of HIV by gamma irradiation., International Orthopaedics, 18 (1994) 172-176.
    [10] J.D. Currey, J. Foreman, I. Laketic, J. Mitchell, D.E. Pegg, G.C. Reilly, Effects of ionizing radiation on the mechanical properties of human bone, Journal of Orthopaedic Research, 15 (1997) 111-117.
    [11] O. Akkus, C.M. Rimnac, Fracture resistance of gamma radiation sterilized cortical bone allografts, Journal of Orthopaedic Research, 19 (2001) 927-934.
    [12] M.J. Bowden, A perspective on resist materials for fine-line lithography. Thompson LF, Willson CG, Fréchet JMJ, editors. Materials for Microlithography (ACS Symposium Series 266), Washington DC, 1984, pp. chapter 3.
    [13] J. Masson, Acrylic Fiber Technology and Applications, CRC Press, New York, 1995.
    [14] L.A. Wall, D.W. Brown, Gamma irradiation of polymethyl methacrylate and polystyrene., Journal of Physical Chemistry, 61 (1957) 129-136.
    [15] H. Kudoh, Application of target theory for the radiation degradation of mechanical properties of polymer materials, Journal of Materials Science Letters, 15 (1996) 666-669.
    [16] A.C. Ouano, D.E. Johnson, B. Dawson, L.A. Pederson, Chain scission efficiency of some polymers in γ-radiation, J. Polym. Sci. Polym. Chem. Ed., 14 (1976) 701-711.
    [17] H.N. Subrahmanyam, S.V. Subramanyam, Thermal expansion of irradiated poly (methyl methacrylate)., Polymer, 28 (1987) 1331-1333.
    [18] K.P. Lu, S. Lee, C.P. Cheng, Hardness of irradiated poly(methyl methacrylate) at elevated temperatures, Journal of Applied Physics, 90 (2001) 1745-1749.
    [19] K.P. Lu, S. Lee, C.P. Cheng, Transmittance in irradiated poly(methyl methacrylate) at elevated temperatures, Journal of Applied Physics, 88 (2000) 5022-5027.
    [20] E.H. Lee, G.R. Rao, L.K. Mansur, LET effect on cross-linking and scission mechanisms of PMMA during irradiation, Radiation Physics and Chemistry, 55 (1999) 293-305.
    [21] C.-C. Lin, L.-J. Ming, C.-C. Lee, S. Lee, EPR kinetics in irradiated syndiotactic polystyrene at elevated temperatures, Polymer, 49 (2008) 3987-3992.
    [22] Y.-S. Lin, L.-J. Ming, J.S. Peng, Y.-K. Fu, S. Lee, Radical Annihilation of gamma-Ray-Irradiated Contact Lens Blanks Made of a 2-Hydroxyethyl Methacrylate Copolymer at Elevated Temperatures, Journal of Applied Polymer Science, 117 (2010) 3114-3120.
    [23] R.J. Abraham, H.W. Melville, D.W. Ovenall, D.H. Whiffen, Electron spin resonance spectra of free radicals in irradiated polymethyl methacrylate and related compounds., Transactions of the Faraday Society, 54 (1958) 1133-1139.
    [24] D.J.E. Ingram, M.C.R. Symons, M.G. Townsend, Electron spin resonance spectra of free radicals in irradiated polymethyl methacrylate and related compounds., Transactions of the Faraday Society, 54 (1958) 409-415.
    [25] L.H. Piette, NMR and EPR Spectroscopy, Pergamon, 1960.
    [26] M. Trihi, J.L. Duroux, M.J. Hyvernaud, M. Bernard, Study of free radicals in irradiated PMMA (doped or undoped) using ESR spectroscopy, Applied Radiation and Isotopes, 47 (1996) 1561-1563.
    [27] T. Ichikawa, H. Yoshida, Mechanism of radiation‐induced degradation of poly (methyl methacrylate) as studied by ESR and electron spin echo methods., Journal of Polymer Science Part a-Polymer Chemistry, 28 (1990) 1185-1196.
    [28] M. Tanaka, H. Yoshida, T. Ichikawa, Thermal and Photo-Induced Reactions of Polymer Radicals in γ-Irradiated Poly(alkyl methacrylate)
    , Polymer Journal, 22 (1990) 835-841.
    [29] Y.S. Lin, S.B. Lee, B.C. Lin, C.P. Cheng, EPR studies of high dose gamma-irradiated poly(methyl methacrylate), Materials Chemistry and Physics, 78 (2003) 847-851.
    [30] T. Ichikawa, K.I. Oyama, T. Kondoh, H. Yoshida, Efficiency of radiation‐induced main‐chain scission of poly (methyl methacrylate) depends on the irradiation temperature because of coexisting monomer., Journal of Polymer Science Part a-Polymer Chemistry, 32 (1994) 2487-2492.
    [31] P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution, Biomaterials, 22 (2001) 3273-3283.
    [32] F. Fornasiero, F. Krull, J.M. Prausnitz, C.J. Radke, Steady-state diffusion of water through soft-contact-lens materials, Biomaterials, 26 (2005) 5704-5716.
    [33] J.P. Chen, S.H. Chiu, A poly(N-isopropylacrylamide-co-N-acryloxysuccinimide-co-2-hydroxyethyl methacrylate) composite hydrogel membrane for urease immobilization to enhance urea hydrolysis rate by temperature swing, Enzyme and Microbial Technology, 26 (2000) 359-367.
    [34] K. Sakai, Artificial kidney engineering - Dialysis membrane and dialyzer for blood purification, Journal of Chemical Engineering of Japan, 30 (1997) 587-599.
    [35] D.G. Pedley, P.J. Skelly, B.J. Tighe, Hydrogels in Biomedical Applications, Brit. Poly. J., 12 (1980) 99-110.
    [36] C. Yin, S.M. Chia, C.H. Quek, H.R. Yu, R.X. Zhuo, K.W. Leong, H.Q. Mao, Microcapsules with improved mechanical stability for hepatocyte culture, Biomaterials, 24 (2003) 1771-1780.
    [37] E.M. Anderson, M.L. Noble, S. Garty, H. Ma, J.D. Bryers, T.T. Shen, B.D. Ratner, Sustained release of antibiotic from poly(2-hydroxyethyl methacrylate) to prevent blinding infections after cataract surgery, Biomaterials, 30 (2009) 5675-5681.
    [38] M. Babazadeh, L. Edjlali, L. Rashidian, Application of 2-hydroxyethyl methacrylate polymers in controlled release of 5-aminosalicylic acid as a colon-specific drug, Journal of Polymer Research, 14 (2007) 207-213.
    [39] T. Caykara, C. Ozyurek, O. Kantoglu, O. Guven, Influence of gel composition on the solubility parameter of poly(2-hydroxyethyl methacrylate-itaconic acid), Journal of Polymer Science Part B-Polymer Physics, 40 (2002) 1995-2003.
    [40] K. Dusek, J. Janacek, Hydrophilic gels based on copolymers of 2‐hydroxyethyl methacrylate with methacrylamide and acrylamide., Journal of Applied Polymer Science, 19 (1975) 3061-3075.
    [41] I.M. Klotz, J.S. Franzen, Hydrogen bonds between model peptide groups in solution., Journal of the American Chemical Society, 84 (1962) 3461-3466.
    [42] Z. Chang, J.A. Laverne, Hydrogen production in γ-ray and helium-ion radiolysis of polyethylene, polypropylene, poly(methyl-methacrylate), and polystyrene, J. Polym. Sci. A Polym. Chem., 38 (2000) 1656-1661.
    [43] M.C. Gupta, V.G. Deshmukh, Radiation effects on poly (lactic acid)., Polymer, 24 (1983) 827-830.
    [44] J.P. Harmon, A.G. Taylor, G.T. Schueneman, E.P. Goldberg, Stability of UV/visible transmission spectra of cross-linked poly (methylphenylsiloxane) after gamma irradiation—A not, Polymer Degradation and Stability, 41 (1993) 319-322.
    [45] K.P. Lu, S. Lee, C.C. Han, Transmission in irradiated hydroxyethyl methacrylate copolymer at elevated temperatures, Journal of Materials Research, 17 (2002) 2260-2265.
    [46] A. Davis, J.H. Golden, Stability of polycarbonate., Journal of Macromolecular Science-Reviews in Macromolecular Chemistry, C 3 (1969) 49-68.
    [47] A. Factor, J.C. Carnahan, S.B. Dorn, P.C. Vandort, The chemistry of gamma-irradiated bisphenol-A polycarbonate., Polymer Degradation and Stability, 45 (1994) 127-137.
    [48] A. Torikai, T. Murata, K. Fueki, Radiation-induced degradation of polycarbonate: Electron spin resonance and molecular weight measurements, Polymer Degradation and Stability, 7 (1984) 55-64.
    [49] M. Chipara, M.D. Chipara, UV-Vis investigations on ion beam irradiated polycarbonate, e-Polymers, (2008) 1669-1678..
    [50] C.E. Lundy, S. Krishnan, 33rd IUPAC International Symposium on Macromolecules, July 8-13, 1990, Montréal, Canada, Polymer-Plastics Technology and Engineering, (1990).
    [51] K.P. Lu, Y.K. Fu, S. Lee, Hardness of Irradiated Hydroxyethyl Methacrylate Copolymer at Elevated Temperatures, Journal of Applied Polymer Science, 113 (2009) 657-661.
    [52] M. Kuzuya, M. Ishikawa, A. Noguchi, K. Sawada, S.I. Kondo, Nature of plasma‐induced radicals on crosslinked methacrylic polymers studied by electron spin resonance., Journal of Polymer Science Part a-Polymer Chemistry, 30 (1992) 379-387.
    [53] T.G. Carswell, The polymerization and radiation degradation of polyesters, PHD thesis, University of Queensland, (1991).
    [54] P. Silva, C. Albano, R. Perera, EPR study of the formation of radicals in PP with antioxidants irradiated with gamma rays, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 265 (2007) 300-304.
    [55] D.R. Duling, Simulation of multiple isotropic spin-trap EPR spectra., Journal of Magnetic Resonance Series B, 104 (1994) 105-110.
    [56] A. Todd, The mechanisms of radiation‐induced changes in vinyl polymers., Journal of Polymer Science, 42 (1960) 223-247.
    [57] D.J.T. Hill, J.H. Odonnell, P.J. Pomery, G. Saadat, Degradation of poly(2-hydroxyethyl methacrylate) by gamma irradiation, Radiation Physics and Chemistry, 48 (1996) 605-612.
    [58] M.H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, John Wiley & Sons, 2008.
    [59] A.T. Bullock, L.H. Sutcliffe, Esr spectra of free radicals derived from polymethylmethacrylate., Transactions of the Faraday Society, 60 (1964) 625-633.
    [60] P.J. Krusic, J.K. Kochi, Electron spin resonance of aliphatic hydrocarbon radicals in solution, Journal of the American Chemical Society, 90 (1968) 7155-7157.
    [61] A.J. Fielding, P. Franchi, B.P. Roberts, T.M. Smits, EPR and computational studies of the formation and β-scission of cyclic and acyclic dialkoxyalkyl radicals, J. Chem. Soc., Perkin Trans. 2, (2002) 155-163.
    [62] N.J. Turro, X.G. Lei, S. Jockusch, W. Li, Z.Q. Liu, L. Abrams, M.F. Ottaviani, EPR investigation of persistent radicals produced from the photolysis of dibenzyl ketones adsorbed on ZSM-5 zeolites, Journal of Organic Chemistry, 67 (2002) 2606-2618.
    [63] D.E. Wood, R.F. Sprecher, EPR evidence for the non-planarity of t-butyl radical., Molecular Physics, 26 (1973) 1311-1316.
    [64] R.A. Zhitnikov, Y.A. Dmitriev, Detection of free radicals in low-temperature gas-grain reactions of astrophysical interest, Astronomy & Astrophysics, 386 (2002) 1129-1138.
    [65] J.K. Kochi, P.J. Krusic, Isomerization and electron spin resonance of allylic radicals, Journal of the American Chemical Society, 90 (1968) 7157-7159.
    [66] A. Gupta, R. Liang, F.D. Tsay, J. Moacanin, Characterization of a dissociative excited state in the solid state: photochemistry of poly (methyl methacrylate). Photochemical processes in polymeric systems, Macromolecules, 13 (1980) 1696-1700.
    [67] A.C.F. Hoole, M.E. Welland, A.N. Broers, Negative PMMA as a high-resolution resist - the limits and possibilities, Semiconductor Science and Technology, 12 (1997) 1166-1170.
    [68] G.S. Oehrlein, R.J. Phaneuf, D.B. Graves, Plasma-polymer interactions: A review of progress in understanding polymer resist mask durability during plasma etching for nanoscale fabrication, Journal of Vacuum Science & Technology B, 29 (2011) 010801.
    [69] T.R. Waite, General theory of bimolecular reaction rates in solids and liquids., Journal of Chemical Physics, 28 (1958) 103-106.
    [70] T.R. Waite, Bimolecular reaction rates in solids and liquids., Journal of Chemical Physics, 32 (1960) 21-23.
    [71] H.Y. Lin, Y.Z. Tsai, S. Lee, Evolution of hardness and transmittance in irradiated LiF single crystals at elevated temperatures., Journal of Materials Research, 7 (1992) 2833-2839.
    [72] W.L. Brown, W.M. Augustyniak, T.R. Waite, Annealing of radiation defects in semiconductors., Journal of Applied Physics, 30 (1959) 1258-1268.
    [73] H.M. Zidan, A. El-Khodary, I.A. El-Sayed, H.I. El-Bohy, Optical parameters and absorption studies of UV‐irradiated azo dye‐doped PMMA films., Journal of Applied Polymer Science, 117 (2010) 1416-1423.
    chapter 5
    [1] S.Y. Chou, L. Zhuang, and L. Guo, Lithographically induced self-construction of polymer microstructures for resistless patterning. Applied Physics Letters. 75 (1999) 1004-1006.
    [2] S.Y. Chou and L. Zhuang, Lithographically induced self-assembly of periodic polymer micropillar arrays. Journal of Vacuum Science & Technology B. 17 (1999) 3197-3202.
    [3] M.J. Fasolka and A.M. Mayes, Block copolymer thin films: physics and applications 1. Annual Review of Materials Research. 31 (2001) 323-355.
    [4] G. Reiter, Dewetting of thin polymer films. Phys. Rev. Lett. 68 (1992) 75-78.
    [5] A. Sharma and G. Reiter, Instability of Thin Polymer Films on Coated Substrates: Rupture, Dewetting, and Drop Formation. Journal of Colloid and Interface Science. 178 (1996) 383-399.
    [6] E. Schäffer, T. Thurn-Albrecht, T.P. Russell, and U. Steiner, Electrohydrodynamic instabilities in polymer films. Europhysics Letters. 53 (2001) 518-524.
    [7] E. SchaÈffer, T. Thurn-Albrecht, T.P. Russell, and U. Steiner, Electrically induced structure formation and pattern transfer. Nature. 403 (2000) 874-877.
    [8] N. Wu and W.B. Russel, Micro-and nano-patterns created via electrohydrodynamic instabilities. Nano Today. 4 (2009) 180-192.
    [9] E. Schäffer, S. Harkema, R. Blossey, and U. Steiner, Temperature-gradient–induced instability in polymer films. Europhysics Letters. 60 (2002) 255-261.
    [10] E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, and U. Steiner, Morphological instability of a confined polymer film in a thermal gradient. Macromolecules. 36 (2003) 1645-1655.
    [11] E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, and U. Steiner, Thermomechanical lithography: pattern replication using a temperature gradient driven instability. Advanced Materials. 15 (2003) 514-517.
    [12] J. Peng, Y. Han, Y. Yang, and B. Li, Pattern formation in polymer films under the mask. Polymer. 44 (2003) 2379-2384.
    [13] J. Peng, H. Wang, B. Li, and Y. Han, Pattern formation in a confined polymer film induced by a temperature gradient. Polymer. 45 (2004) 8013-8017.
    [14] M.D. Morariu, E. Schäffer, and U. Steiner, Capillary instabilities by fluctuation induced forces. The European Physical Journal E: Soft Matter and Biological Physics. 12 (2003) 375-381.
    [15] J. Huang, M. Juszkiewicz, W.H. De Jeu, E. Cerda, T. Emrick, N. Menon, and T.P. Russell, Capillary wrinkling of floating thin polymer films. Science. 317 (2007) 650-653.
    [16] J.W. Swan, Stress and other effects produced in resin and in a viscid compound of resin and oil by electrification. Proceedings of the Royal Society of London. 62 (1897) 38-46.
    [17] P.J. Cressman, New Type of Thermoplastic Deformation. Journal of Applied Physics. 34 (1963) 2327-2330.
    [18] Z. Lin, T. Kerle, S.M. Baker, D.A. Hoagland, E. Schäffer, U. Steiner, and T.P. Russell, Electric field induced instabilities at liquid/liquid interfaces. The Journal of Chemical Physics. 114 (2001) 2377-2381.
    [19] Z. Lin, T. Kerle, T.P. Russell, E. Schäffer, and U. Steiner, Electric field induced dewetting at polymer/polymer interfaces. Macromolecules. 35 (2002) 6255-6262.
    [20] Z. Lin, T. Kerle, T.P. Russell, E. Schäffer, and U. Steiner, Structure formation at the interface of liquid/liquid bilayer in electric field. Macromolecules. 35 (2002) 3971-3976.
    [21] D. Bandyopadhyay and A. Sharma, Self-organized microstructures in thin bilayers on chemically patterned substrates. The Journal of Physical Chemistry C. 114 (2010) 2237-2247.
    [22] A. Ghatak, M. Chaudhury, V. Shenoy, and A. Sharma, Meniscus Instability in a Thin Elastic Film. Phys. Rev. Lett. 85 (2000) 4329-4332.
    [23] K. Kargupta and A. Sharma, Templating of Thin Films Induced by Dewetting on Patterned Surfaces. Phys. Rev. Lett. 86 (2001) 4536-4539.
    [24] P.S.G. Pattader, I. Banerjee, A. Sharma, and D. Bandyopadhyay, Multiscale Pattern Generation in Viscoelastic Polymer Films by Spatiotemporal Modulation of Electric Field and Control of Rheology. Advanced Functional Materials. 21 (2011) 324-335.
    [25] A. Sharma, Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems. Langmuir. 9 (1993) 861-869.
    [26] V. Shenoy and A. Sharma, Pattern Formation in a Thin Solid Film with Interactions. Phys. Rev. Lett. 86 (2001) 119-122.
    [27] R. Verma, A. Sharma, K. Kargupta, and J. Bhaumik, Electric Field Induced Instability and Pattern Formation in Thin Liquid Films. Langmuir. 21 (2005) 3710-3721.
    [28] L.F. Pease Iii and W.B. Russel, Charge driven, electrohydrodynamic patterning of thin films. The Journal of chemical physics. 125 (2006).
    [29] N. Wu, M.E. Kavousanakis, and W.B. Russel, Coarsening in the electrohydrodynamic patterning of thin polymer films. Physical Review E. 81 (2010) 026306.
    [30] N. Wu, L.F. Pease, and W.B. Russel, Toward Large-Scale Alignment of Electrohydrodynamic Patterning of Thin Polymer Films. Advanced Functional Materials. 16 (2006) 1992-1999.
    [31] N. Wu and W.B. Russel, Electrohydrodynamic instability of dielectric bilayers: Kinetics and thermodynamics. Industrial & engineering chemistry research. 45 (2006) 5455-5465.
    [32] L.F. Pease Iii and W.B. Russel, Linear stability analysis of thin leaky dielectric films subjected to electric fields. Journal of Non-Newtonian Fluid Mechanics. 102 (2002) 233-250.
    [33] L.F. Pease Iii and W.B. Russel, Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: a generalized linear stability analysis. The Journal of chemical physics. 118 (2003) 3790-3803.
    [34] K. Hareesh, A.K. Pandey, Y. Sangappa, R. Bhat, A. Venkataraman, and G. Sanjeev, Changes in the properties of Lexan polycarbonate by UV irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 295 (2013) 61-68.
    [35] K. Hareesh, 8 MeV Electron Induced Changes in Structural and Thermal Properties of Lexan Polycarbonate. Materials Sciences and Applications. 02 (2011) 1682-1687.
    [36] B. Jaleh, P. Parvin, N. Sheikh, M. Hajivaliei, and E. Hasani, Surface modification of Lexan treated by RF plasma. Surface and Coatings Technology. 203 (2009) 2759-2762.
    [37] B.N. Jang and C.A. Wilkie, A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polymer Degradation and Stability. 86 (2004) 419-430.
    [38] G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template. Nanoscale Res Lett. 3 (2008) 118-122.
    [39] S. Ramesh, K.H. Leen, K. Kumutha, and A.K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 66 (2007) 1237-1242.
    [40] A. Rivaton, D. Sallet, and J. Lemaire, The photo-chemistry of bisphenol-A polycarbonate reconsidered: Part 2—FTIR analysis of the solid-state photo-chemistry in ‘dry’ conditions. Polymer Degradation and Stability. 14 (1986) 1-22.
    [41] A.P. Shpak and P.P. Gorbik, Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2009: Springer Science & Business Media. 71.
    [42] E. Schäffer, Instabilities in Thin Polymer Films: Structure Formation and Pattern Transfer, in University of konstanz. 2001.
    appendix
    [1] Reproduced by the permission of SPERIAN Protective Apparel, Ltd,.
    [2] C.C. Lin, The Application of Micro/Nano-Structures and Materials in Nanotechnology (2011),
    [3] http://www.fireapparatusmagazine.com/index.html,
    [4] http://www2.dupont.com/Personal_Protection/en_US/products,
    [5] J. Chin, A. Forster, C. Clerici, L. Sung, M. Oudina, K. Rice, Temperature and humidity aging of poly(p-phenylene-2,6-benzobisoxazole) fibers: Chemical and physical characterization, Polymer Degradation and Stability, 92 (2007) 1234-1246.
    [6] H. Mera, T. Takata, High-Performance Fibers, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, (2000).
    [7] http://www.goodfellow.com/E/Polybenzimidazole.HTML.
    [8] T. Sugama, Hydrothermal degradation of polybenzimidazole coating, Materials Letters, 58 (2004) 1307-1312.
    [9] H. Zhang, J. Zhang, J. Chen, X. Hao, S. Wang, X. Feng, Y. Guo, Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber, Polymer Degradation and Stability, 91 (2006) 2761-2767.
    [10] W.C. Tincher, W.C. Carter, D.R. Gentry, Protection of Nomex from Ultraviolet Degradation, DTIC Document, (1977).
    [11] 1851 Standard on Selection, Care, and Maintenance of Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting. National Fire Protection Association, (2007).
    [12] 1971 Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting. National Fire Protection Association, (2008).
    [13] J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, J. Martin, Accelerated UV weathering device based on integrating sphere technology, Review of scientific instruments, 75 (2004) 4951-4959.
    [14] G173-03e1 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. American Standard Test Methods, (2005).
    [15] W. Chin Joannie, W.E. Byrd, E. Embree, J. Martin, Integrating Sphere Sources for UV Exposure: A Novel Approach to the Artificial UV Weathering of Coatings, Plastics, and Composites, in: Service Life Prediction, American Chemical Society, (2001) 144-160.
    [16] D. Committee, Test Method for Tearing Strength of Fabrics by the Tongue (Single Rip) Procedure (Constant-Rate-of-Extension Tensile Testing Machine), ASTM International, (1996).
    [17] D. Committee, Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method), in, ASTM International, 2006.
    [18] Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, Z. Yang, Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells, Polymer Degradation and Stability, 94 (2009) 1206-1212.
    [19] M.Y. Jang, Y. Yamazaki, Preparation, characterization and proton conductivity of membrane based on zirconium tricarboxybutylphosphonate and polybenzimidazole for fuel cells, Solid State Ionics, 167 (2004) 107-112.
    [20] J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd, (2006).
    [21] V. Deimede, G.A. Voyiatzis, J.K. Kallitsis, L. Qingfeng, N.J. Bjerrum, Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications, Macromolecules, 33 (2000) 7609-7617.
    [22] A.M. Tiefenthaler, M.W. Urban, Surface studies of polymer films and fibers by CIRCLE ATR FT-IR, Applied spectroscopy, 42 (1988) 163-166.
    [23] M.E.G. Mosquera, M. Jamond, A. Martinez-Alonso, J.M.D. Tascon, Thermal Transformations of Kevlar Aramid Fibers During Pyrolysis: Infrared and Thermal Analysis Studies, Chem. Mater., 6 (1994) 1918-1924.
    [24] J. Luo, Y. Sun, Acyclic N-Halamine Coated Kevlar Fabric Materials: Preparation and Biocidal Functions, Ind. Eng. Chem. Res., 47 (2008) 5291-5297.
    [25] R. Davis, J. Chin, C.-C. Lin, S. Petit, Accelerated weathering of polyaramid and polybenzimidazole firefighter protective clothing fabrics, Polymer Degradation and Stability, 95 (2010) 1642-1654.
    [26] AATCC 183-2000 Transmittance or Blocking of Erythemally Weighted Ultraviolet Radiation through Fabrics,” American Association of Textiles, Chemists, and Colorists, Research Triangle Park, NC, (2000).
    [27] C.R. Roy, H.P. Gies, Protective Measures Against Solar UV Exposures, Radiat Prot Dosimetry, 72 (1997) 231-240.
    [28] H.E. Nasr, S.M. Sayyah, D.M. Essa, S.H. Samaha, A.M. Rabie, Utilization of acrylates emulsion terpolymer with chitosan as a finishing agent for cotton fabrics, Carbohydrate Polymers, 76 (2009) 36-45.
    [29] B.L. Diffey, Solar ultraviolet radiation effects on biological systems, Phys. Med. Biol., 36 (1991) 299-328.
    [30] J.W.S. Hearle, B. Lomas, W.D. Cooke, Atlas of Fibre Fracture and Damage to Textiles, 2nd ed., Elsevier, 1998.
    [31] D. Committee, Guide for Labeling of UV-Protective Textiles, in, ASTM International, (2007).
    [32] M.G. Dobb, D.J. Johnson, B.P. Saville, Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49), J. Polym. Sci. Polym. Phys. Ed., 15 (1977) 2201-2211.
    [33] D.J. Carlsson, L.H. Gan, D.M. Wiles, The Photolyses of Fully Aromatic Amides, Can. J. Chem., 53 (1975) 2337-2344.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE