簡易檢索 / 詳目顯示

研究生: 張景惟
Chang, Ching Wei
論文名稱: 雙原子層銻化銦在Ge(111)晶面上的成長模式與結構
Growth Mode and Atomic Structure of the InSb Bilayer on the Ge(111) Surface
指導教授: 林登松
Lin, Deng Sung
口試委員: 鄭弘泰
Jeng, Horng Tay
魏德新
Wei, Der Hsin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 68
中文關鍵詞: 銻化銦鍺(111)異質磊晶Ⅲ-Ⅴ族半導體
外文關鍵詞: InSb, Ge(111), heteroepitaxy, Ⅲ-Ⅴ semiconductor, Antimony, Indium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Ⅲ-Ⅴ族化合物半導體是可以做成高速且低功率元件的重要材料,因此一直持續吸引科技界的研究,銻化銦就是其中極優異的一種Ⅲ-Ⅴ族化合物,它在室溫下具有高電子遷移率、低能隙及高電子飽和速率,而鍺亦具有高電洞遷移率,將Ⅲ-Ⅴ化合物與Ⅳ族元素結合的Ⅲ-Ⅴ FinFET具有高速且低功率的特性,有極高的應用價值潛力。
      在這個研究中,我們的目標是利用分子束磊晶法,在鍺基板上長出銻化銦薄膜。生長出的薄膜利用掃描穿隧顯微鏡及X射線光電子能譜兩種工具來研究其在Ge(111)基板的介面成長及原子結構,掃描穿隧顯微鏡可以直接地觀察到樣品表面原子的形貌,而X射線光電子能譜則能夠幫助釐清樣品表層原子間的鍵結模式及各原子比例。
      本實驗首先利用分子束磊晶的方式蒸鍍1.0 ML的銻原子在Ge(111)表面再退火至500 ℃,以形成Sb/Ge(111)-(2 × 1)的表面,接著於Sb/Ge(111)-(2 × 1)的表面蒸鍍上銦原子,再退火至400 ℃,這個過程會在部分表面上形成蜂窩狀結構的InSb/Ge(111)-(2 × 2),其高度相對於Sb/Ge(111)-(2 × 1)的表面高了2.6 Å,重複幾輪蒸鍍銦原子及退火400 ℃的過程後,我們成功地在鍺基板上長出銻化銦薄膜。我們也提出了InSb/Ge(111)-(2 × 2)的原子模型來解釋整個成長過程。
      Ⅲ-Ⅴ化合物在Ⅳ族元素上的成長模式雖已有許多的研究,但銻化銦成長在鍺基板上是文獻卻很少,本實驗為成長銻化銦在Ge(111)基板提供了新的方法,並詳細的瞭解了銻化銦在Ge(111)基板上的介面成長模式,我們的研究對未來科技發展的實際應用提供了一個方向。


    The Ⅲ-Ⅴ compound semiconductors have attracted much attention as material for high speed and low power device applications. InSb is one of the best Ⅲ-Ⅴ compound semiconductor with high electron mobility, small band gap, and high electron saturation velocity. Ge has high hole mobility. Therefore, Ⅲ-Ⅴ FinFET that combines Ⅲ-Ⅴ compound semiconductors with Ge substrates has high potential for applications in high speed and low power devices.
    This research aims to grow the InSb film on the Ge(111) surface by molecular beam epitaxy (MBE). The X-ray photoelectron spectroscopy and scanning tunneling microscopy have been utilized to explore the interface and atomic structure of the grown InSb films. The atomic morphology of the surface can be obtained directly in real space by using scanning tunneling microscopy, while the chemical bonding and elemental composition of the topmost few layers of the sample can be detected by X-ray photoelectron spectroscopy.
    Evaporating 1.0 monolayer (ML) Sb on Ge(111) by MBE followed by 500 ℃ annealing results in the 1.0 ML Sb-terminated Ge(111)-(2 × 1) surface. Subsequently depositing In atoms on the Sb/Ge(111)-(2 × 1) was performed at room temperature and followed by 400℃ post-annealing. The honeycomb-like structure of InSb/Ge(111)-(2 × 2) is observed on parts of the surface. The apparent height of InSb is 2.6 Å above the Sb/Ge(111)-(2 × 1) domains. After few cycles of In deposition and post annealing, InSb domains are grown on the Ge substrate. The atomic model of InSb/Ge(111)-(2 × 2) is also established to explain the process of growth.
    Several groups have reported the growth mode of Ⅲ-Ⅴ compound on the group Ⅳ substrate. In contrast, the growth of InSb films on Ge substrate is less investigated. We employed a new method to grow InSb on Ge(111) and observed the interface formation in detail. Our research sheds light to the practical applications of the future technology development.

    目錄 摘要 i Abstract ii 致謝 iv 目錄 v 圖表目錄 vii 第一章 簡介 1 1.1 研究動機 1 1.2 鍺(Germanium)晶體結構 2 1.3 相關文獻 8 1.3.1 InSb(111)A-(2 × 2)的表面結構與電子態 8 1.3.2 銻原子吸附在Si(111)-In(4 × 1)上的重構 11 第二章 實驗儀器原理與操作 16 2.1 真空系統 16 2.1.1 真空幫浦及氣壓測量儀 18 2.1.2 抽真空概略程序 22 2.2 X射線光電子能譜學 24 2.2.1 X射線光電子能譜原理 24 2.2.2 同步輻射中心BL24A實驗站 25 2.2.3 能譜擬和參數 26 2.3 掃描穿隧顯微鏡(Scanning Tunneling Microscopy, STM) 27 2.3.1 量子穿隧效應 27 2.3.2 STM細部構造 29 2.3.3 STM影像擷取 32 2.4 蒸鍍槍原理 33 2.5 探針製作、樣品製備集其溫度量測 35 2.5.1 探針製作 35 2.5.2 樣品製備 36 2.5.3 樣品溫度量測 38 第三章 實驗結果與分析 39 3.1 Ge(111)c(2 × 8) 39 3.2 Sb/Ge(111)-(2 × 1) 41 3.3 蒸鍍銦原子在Sb/Ge(111)-(2 × 1)表面再退火 45 3.4 蒸鍍銦原子在維持100 ℃的Sb/Ge(111)-(2 × 1)表面 49 3.5 蒸鍍銦原子在Sb/Ge(111)-(2 × 1)表面再退火至400 ℃ 52 3.6 共同蒸鍍銦原子與銻原子在Ge(111)表面再退火 62 第四章 結論 64 參考文獻 67

    參考文獻
    [1] H.-C. Chin, X. Gong, L. Wang, H. K. Lee, L. Shi, and Y.-C. Yeo, IEEE Electron Device Letters 32, 146 (2011).
    [2] S. H. Park, Y. Liu, N. Kharche, M. S. Jelodar, G. Klimeck, M. S. Lundstrom, and M. Luisier, IEEE Transactions on Electron Devices 59, 2107 (2012).
    [3] B. V. Rao, D. V. Gruznev, T. Tambo, and C. Tatsuyama, Japanese Journal of Applied Physics 40, 4304 (2001).
    [4] D. V. Gruznev, B. V. Rao, T. Tambo, and C. Tatsuyama, Applied Surface Science 190, 134 (2002).
    [5] S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, Journal of Applied Physics 68, R31 (1990).
    [6] Silicon Crystal Structure, (HyperPhysics).
    [7] N. Takeuchi, A. Selloni, and E. Tosatti, Phys Rev Lett 69, 648 (1992).
    [8] LEED Studies of Atomic Structures of Si{111}√3x√3-30-metal Surface Phases, (James Edward Quinn).
    [9] R. S. Becker, B. S. Swartzentruber, J. S. Vickers, and T. Klitsner, Physical Review B 39, 1633 (1989).
    [10] I. Razado-Colambo, J. He, H. M. Zhang, G. V. Hansson, and R. I. G. Uhrberg, Physical Review B 79 (2009).
    [11] E. S. Hirschorn, D. S. Lin, F. M. Leibsle, A. Samsavar, and T. C. Chiang, Physical Review B 44, 1403 (1991).
    [12] A. Ohtake and J. Nakamura, Surface Science 396, 394 (1998).
    [13] J. Bohr, R. Feidenhans'l, M. Nielsen, M. Toney, R. L. Johnson, and I. K. Robinson, Phys Rev Lett 54, 1275 (1985).
    [14] T. Eguchi, T. Miura, S.-P. Cho, T. Kadohira, N. Naruse, and T. Osaka, Surface Science 514, 343 (2002).
    [15] Turbomolecular pump, (wikipedia).
    [16] Turbo Molecular Pumps (Compound Molecular Pumps) Exhaust Theory, (Osaka Vacuum, Ltd.).
    [17] X-ray Photoelectron Spectroscopy (XPS), (West Campus Materials Characterization Core).
    [18] XPS, (IFW Dresden).
    [19] SXSPM Research | Physical Concept, (Advanced Photon Source (APS)).
    [20] STM, (Zhou research group).
    [21] Piezoelectricity, (wikipedia).
    [22] M. Kuzmin, P. Laukkanen, R. E. Perälä, M. Ahola-Tuomi, and I. J. Väyrynen, Surface Science 601, 837 (2007).
    [23] N. Takeuchi, Physical Review B 53, 7996 (1996).
    [24] S. Y. Tong, G. Xu, and W. N. Mei, Physical Review Letters 52, 1693 (1984).
    [25] K. W. Haberern and M. D. Pashley, Physical Review B 41, 3226 (1990).
    [26] G. Xu, W. Y. Hu, M. W. Puga, S. Y. Tong, J. L. Yeh, S. R. Wang, and B. W. Lee, Physical Review B 32, 8473 (1985).
    [27] A. Taguchi and K. Kanisawa, Applied Surface Science 252, 5263 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE