研究生: |
張景惟 Chang, Ching Wei |
---|---|
論文名稱: |
雙原子層銻化銦在Ge(111)晶面上的成長模式與結構 Growth Mode and Atomic Structure of the InSb Bilayer on the Ge(111) Surface |
指導教授: |
林登松
Lin, Deng Sung |
口試委員: |
鄭弘泰
Jeng, Horng Tay 魏德新 Wei, Der Hsin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 銻化銦 、鍺(111) 、異質磊晶 、Ⅲ-Ⅴ族半導體 、銻 、銦 |
外文關鍵詞: | InSb, Ge(111), heteroepitaxy, Ⅲ-Ⅴ semiconductor, Antimony, Indium |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ⅲ-Ⅴ族化合物半導體是可以做成高速且低功率元件的重要材料,因此一直持續吸引科技界的研究,銻化銦就是其中極優異的一種Ⅲ-Ⅴ族化合物,它在室溫下具有高電子遷移率、低能隙及高電子飽和速率,而鍺亦具有高電洞遷移率,將Ⅲ-Ⅴ化合物與Ⅳ族元素結合的Ⅲ-Ⅴ FinFET具有高速且低功率的特性,有極高的應用價值潛力。
在這個研究中,我們的目標是利用分子束磊晶法,在鍺基板上長出銻化銦薄膜。生長出的薄膜利用掃描穿隧顯微鏡及X射線光電子能譜兩種工具來研究其在Ge(111)基板的介面成長及原子結構,掃描穿隧顯微鏡可以直接地觀察到樣品表面原子的形貌,而X射線光電子能譜則能夠幫助釐清樣品表層原子間的鍵結模式及各原子比例。
本實驗首先利用分子束磊晶的方式蒸鍍1.0 ML的銻原子在Ge(111)表面再退火至500 ℃,以形成Sb/Ge(111)-(2 × 1)的表面,接著於Sb/Ge(111)-(2 × 1)的表面蒸鍍上銦原子,再退火至400 ℃,這個過程會在部分表面上形成蜂窩狀結構的InSb/Ge(111)-(2 × 2),其高度相對於Sb/Ge(111)-(2 × 1)的表面高了2.6 Å,重複幾輪蒸鍍銦原子及退火400 ℃的過程後,我們成功地在鍺基板上長出銻化銦薄膜。我們也提出了InSb/Ge(111)-(2 × 2)的原子模型來解釋整個成長過程。
Ⅲ-Ⅴ化合物在Ⅳ族元素上的成長模式雖已有許多的研究,但銻化銦成長在鍺基板上是文獻卻很少,本實驗為成長銻化銦在Ge(111)基板提供了新的方法,並詳細的瞭解了銻化銦在Ge(111)基板上的介面成長模式,我們的研究對未來科技發展的實際應用提供了一個方向。
The Ⅲ-Ⅴ compound semiconductors have attracted much attention as material for high speed and low power device applications. InSb is one of the best Ⅲ-Ⅴ compound semiconductor with high electron mobility, small band gap, and high electron saturation velocity. Ge has high hole mobility. Therefore, Ⅲ-Ⅴ FinFET that combines Ⅲ-Ⅴ compound semiconductors with Ge substrates has high potential for applications in high speed and low power devices.
This research aims to grow the InSb film on the Ge(111) surface by molecular beam epitaxy (MBE). The X-ray photoelectron spectroscopy and scanning tunneling microscopy have been utilized to explore the interface and atomic structure of the grown InSb films. The atomic morphology of the surface can be obtained directly in real space by using scanning tunneling microscopy, while the chemical bonding and elemental composition of the topmost few layers of the sample can be detected by X-ray photoelectron spectroscopy.
Evaporating 1.0 monolayer (ML) Sb on Ge(111) by MBE followed by 500 ℃ annealing results in the 1.0 ML Sb-terminated Ge(111)-(2 × 1) surface. Subsequently depositing In atoms on the Sb/Ge(111)-(2 × 1) was performed at room temperature and followed by 400℃ post-annealing. The honeycomb-like structure of InSb/Ge(111)-(2 × 2) is observed on parts of the surface. The apparent height of InSb is 2.6 Å above the Sb/Ge(111)-(2 × 1) domains. After few cycles of In deposition and post annealing, InSb domains are grown on the Ge substrate. The atomic model of InSb/Ge(111)-(2 × 2) is also established to explain the process of growth.
Several groups have reported the growth mode of Ⅲ-Ⅴ compound on the group Ⅳ substrate. In contrast, the growth of InSb films on Ge substrate is less investigated. We employed a new method to grow InSb on Ge(111) and observed the interface formation in detail. Our research sheds light to the practical applications of the future technology development.
參考文獻
[1] H.-C. Chin, X. Gong, L. Wang, H. K. Lee, L. Shi, and Y.-C. Yeo, IEEE Electron Device Letters 32, 146 (2011).
[2] S. H. Park, Y. Liu, N. Kharche, M. S. Jelodar, G. Klimeck, M. S. Lundstrom, and M. Luisier, IEEE Transactions on Electron Devices 59, 2107 (2012).
[3] B. V. Rao, D. V. Gruznev, T. Tambo, and C. Tatsuyama, Japanese Journal of Applied Physics 40, 4304 (2001).
[4] D. V. Gruznev, B. V. Rao, T. Tambo, and C. Tatsuyama, Applied Surface Science 190, 134 (2002).
[5] S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, Journal of Applied Physics 68, R31 (1990).
[6] Silicon Crystal Structure, (HyperPhysics).
[7] N. Takeuchi, A. Selloni, and E. Tosatti, Phys Rev Lett 69, 648 (1992).
[8] LEED Studies of Atomic Structures of Si{111}√3x√3-30-metal Surface Phases, (James Edward Quinn).
[9] R. S. Becker, B. S. Swartzentruber, J. S. Vickers, and T. Klitsner, Physical Review B 39, 1633 (1989).
[10] I. Razado-Colambo, J. He, H. M. Zhang, G. V. Hansson, and R. I. G. Uhrberg, Physical Review B 79 (2009).
[11] E. S. Hirschorn, D. S. Lin, F. M. Leibsle, A. Samsavar, and T. C. Chiang, Physical Review B 44, 1403 (1991).
[12] A. Ohtake and J. Nakamura, Surface Science 396, 394 (1998).
[13] J. Bohr, R. Feidenhans'l, M. Nielsen, M. Toney, R. L. Johnson, and I. K. Robinson, Phys Rev Lett 54, 1275 (1985).
[14] T. Eguchi, T. Miura, S.-P. Cho, T. Kadohira, N. Naruse, and T. Osaka, Surface Science 514, 343 (2002).
[15] Turbomolecular pump, (wikipedia).
[16] Turbo Molecular Pumps (Compound Molecular Pumps) Exhaust Theory, (Osaka Vacuum, Ltd.).
[17] X-ray Photoelectron Spectroscopy (XPS), (West Campus Materials Characterization Core).
[18] XPS, (IFW Dresden).
[19] SXSPM Research | Physical Concept, (Advanced Photon Source (APS)).
[20] STM, (Zhou research group).
[21] Piezoelectricity, (wikipedia).
[22] M. Kuzmin, P. Laukkanen, R. E. Perälä, M. Ahola-Tuomi, and I. J. Väyrynen, Surface Science 601, 837 (2007).
[23] N. Takeuchi, Physical Review B 53, 7996 (1996).
[24] S. Y. Tong, G. Xu, and W. N. Mei, Physical Review Letters 52, 1693 (1984).
[25] K. W. Haberern and M. D. Pashley, Physical Review B 41, 3226 (1990).
[26] G. Xu, W. Y. Hu, M. W. Puga, S. Y. Tong, J. L. Yeh, S. R. Wang, and B. W. Lee, Physical Review B 32, 8473 (1985).
[27] A. Taguchi and K. Kanisawa, Applied Surface Science 252, 5263 (2006).