研究生: |
丁蕎真 Dinh, Kieu Trinh |
---|---|
論文名稱: |
開發新穎CXCR4拮抗劑應用於癌症治療 Development of a Novel CXCR4 Antagonist for Cancer Therapy |
指導教授: |
陳韻晶
Chen, Yunching |
口試委員: |
夏克山
柯屹又 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | CXCR4拮 抗 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在癌症中過量表現的C-X-C chemokine receptor type 4 (CXCR4)及其配體– stromal cell-derived factor 1 (SDF-1 ) 或是CXCL12,在腫瘤生長和轉移中具有關鍵作用,此外CXCL12 / CXCR4的作用途徑,亦與腫瘤微環境中免疫細胞的分佈和浸潤有著高度的相關性。目前已證明幾種CXCR4拮抗劑是很有潛力的抗癌藥物,其結合化療和免疫治療,在動物模型中具有良好抑制腫瘤生長的效果,但目前美國FDA批准的CXCR4拮抗劑–AMD3100的藥代動力學 (pharmacokinetics) 較差,阻斷CXCR4下游途徑的效果亦較低。在我們的研究中,我們旨在開發新型CXCR4拮抗劑,結合抗血管生成療法和免疫療法,可用於治療肝細胞癌(HCC),在原位肝細胞癌模型中,CXCR4拮抗劑–BPRCX807顯著抑制了原發性腫瘤的生長和遠端癌細胞轉移;此外,我們利用BPRCX807和索拉非尼(sorafenib) 的合併治療,顯著地使腫瘤相關的巨噬細胞(tumor-associated macrophage)在腫瘤的浸潤減少, 並趨向M1表型,促進了細胞毒性T細胞和輔助T細胞在腫瘤的浸潤;更進一步與PD-1免疫檢查點抑制劑合併治療後,證實使用BPRCX807能夠阻礙CXCL12 / CXCR4的作用途經,可以增強抗癌免疫反應。因此我們證實BPRCX807可以防止HCC腫瘤中免疫細胞功能的抑制、增強腫瘤中免疫細胞的滲透和活化、減少遠端癌細胞轉移並最終延遲HCC的進展.
The C-X-C chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor 1 (SDF-1) or CXCL12 overexpressed in a variety of cancer types play crucial roles in tumor growth, invasion, angiogenesis, cell survival and metastasis. Furthermore, the CXCL12/CXCR4 axis is highly related to immune cells redistribution and infiltration in tumor microenvironment. Hence, several CXCR4 antagonists have been demonstrated to be promising anti-cancer drugs that have the clinical potential in combination of chemotherapy and immunotherapy to treat solid tumors. However, poor pharmacokinetics of AMD3100, a FDA-approved CXCR4 antagonist, make the efficacy of CXCR4-blocking approach lower. In this proposal, we aim to develop the novel CXCR4 antagonists for the potential treatment of Hepatocellular carcinoma in combination of anti-angiogenic therapy and immunotherapy. In orthotopic Hepatocellular carcinoma model, CXCR4 antagonists- BPRCX807 significantly suppressed primary tumor growth and distal metastasis. Furthermore, the combination of CX807 and sorafenib significantly primed tumor-associated macrophages toward M1-like phenotype and promoted the tumor infiltration of cytotoxic T cell and T helper cell. Its further combination with PD-1 check point blockade demonstrated that antitumor immune responses can be boosted by disrupting the CXCL12/CXCR4 axis by using BPRCX807.
BPRCX807 prevents suppression of immune cell function in HCC tumors, enhances immune cell tumor penetration and activation, reduce metastasis and ultimately delays HCC progression.
REFERENCE
1. Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A., Global cancer statistics, 2012. CA Cancer J Clin 2015, 65 (2), 87-108.
2. American Cancer Society Medical and editorial content team, https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/targeted-therapy/what-is.html#written_by June 6, 2016
3. Hoelder, S., P.A. Clarke, and P. Workman, Discovery of small molecule cancer drugs: Successes, challenges and opportunities. 2012. 6(2): p. 155-176.
4. Debnath, B., et al., Small molecule inhibitors of CXCR4. Theranostics, 2013. 3(1): p. 47-75.
5. Stone, M.J., et al., Mechanisms of Regulation of the Chemokine-Receptor Network. 2017. 18(2): p. 342.
6. Wescott, M.P., et al., Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. 2016. 113(35): p. 9928-9933.
7. Liepelt, A. and F. Tacke, Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. 2016. 311(2): p. G203-G209.
8. Wang Z, Ma Q, Liu Q, Yu H, Zhao L, Shen S et al. Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. Br J Cancer 2008; 99: 1695–1703.
9. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein- coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998; 273: 23169–23175.
10. Guo, F., et al., CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene, 2015. 35: p. 816.
11. Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 2011;11:597–606.
12. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4: 540–50.
13. Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R, et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 2011;71:5522–34
14. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti–PD-1 immunotherapy in sorafenib-treated HCC in mice. Hepatology 2015;61:1591–602.
15. Burger, J.A. and A. Peled, CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia, 2008. 23: p. 43.
16. Grande, F., et al., An update on small molecules targeting CXCR4 as starting points for the development of anti-cancer therapeutics. European Journal of Medicinal Chemistry, 2017. 139: p. 519-530.
17. Rosenkilde, M., et al., Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor. Vol. 279. 2004. 3033-41.
18. He, W., et al., Targeting CXC motif chemokine receptor 4 inhibits the proliferation, migration and angiogenesis of lung cancer cells. Oncology letters, 2018. 16(3): p. 3976-3982.
19. Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA, Tuzlali S, Pumiglia K, Gallick GE, and Price JE: CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65: 6493-6497, 2005
20. Genzyme: Investigator's Brochure for Plerixafor Injection (AMD3100, Mozobil). 1‑142, 2012.
21. Hassan, S., et al., CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. 2011. 129(1): p. 225-232.
22. Pernas, S., et al., Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. The Lancet Oncology, 2018. 19(6): p. 812-824.
23. Stefania Scala Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped Potential in the Tumor Microenvironment. 2015 Oct 1; 21(19):4278-85.
24. Wang, Y., Y. Xie, and D.J.C.P.R. Oupický, Potential of CXCR4/CXCL12 Chemokine Axis in Cancer Drug Delivery. 2016. 2(1): p. 1-10.
25. Dong-Yu Gao, Ts-Ting Lin, Yun-Chieh Sung, Ya Chi Liu, Wen-Hsuan Chiang, Chih-Chun Chang, Jia-Yu Liu, Yunching Chen. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials 2015, 67: 194-203
26. Gravina, G.L., et al., The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumor Biology, 2017. 39(6): p. 1010428317695528.
27. Komorowski, M., et al., Modulation of the Tumor Microenvironment by CXCR4 Antagonist-Armed Viral Oncotherapy Enhances the Antitumor Efficacy of Dendritic Cell Vaccines against Neuroblastoma in Syngeneic Mice. Viruses, 2018. 10(9): p. 455.
28. Uchida, D., Kuribayashi, N., Kinouchi, M., Sawatani, Y., Shimura, M., Mori, T., Hasegawa, T., Miyamoto, Y., Kawamata, H.Effect of a novel orally bioavailable CXCR4 inhibitor, AMD070, on the metastasis of oral cancer cells. Oncology Reports 40.1 (2018): 303-308.
29. Schmittgen, T. D.; Livak, K. J., Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3 (6), 1101-8.
30. Kim, W.; Seong, J.; Oh, H. J.; Koom, W. S.; Choi, K. J.; Yun, C. O., A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res 2011, 52 (5), 646-54.
31. Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W. S.; Ancukiewicz, M.; Nezivar, J.;
Santosuosso, M.; Martin, J. D.; Martin, M. R.; Vianello, F.; Leblanc, P.; Munn, L. L.; Huang, P.; Duda, D. G.; Fukumura, D.; Jain, R. K.; Poznansky, M. C., Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 2012, 109 (43), 17561-6.
32. Debnath B, Xu S, Grande F, Garofalo A, Neamati N. Small molecule inhibitors of CXCR4. Theranostics 2013, 3(1): 47-75.
33. Wu CH, Song JS, Kuan HH, Wu SH, Chou MC, Jan JJ, et al. Development of Stem-Cell-Mobilizing Agents Targeting CXCR4 Receptor for Peripheral Blood Stem Cell Transplantation and Beyond. J Med Chem 2018, 61(3): 818-833.
34. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, et al. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 2015, 347(6226): 1117-1122.
35. Berendsen, H. J. C., Vanderspoel, D. & Vandrunen, R. (1995). Gromacs - a Message-Passing Parallel Molecular-Dynamics Implementation. Computer Physics Communications 91, 43-56.
36. Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 2014, 59(4): 1435-1447.
37. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016, 35(7): 816-826.
38. Li X, Li P, Chang Y, Xu Q, Wu Z, Ma Q, et al. The SDF-1/CXCR4 axis induces epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Cell Biochem 2014, 392(1-2): 77-84.
39. Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018, 9(2): 115.
40. Barsoum IB, Koti M, Siemens DR, Graham CH. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res 2014, 74(24): 7185-7190.
41. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015, 61(5): 1591-1602.
42. Chen, Y.; Ramjiawan, R. R.; Reiberger, T.; Ng, M. R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E. C.; Reddy, T. P.; Fan, C.; Huang, P.; Bardeesy, N.; Zhu, Jain, R. K.; Duda, D. G., CXCR4 inhibition in tumor microenvironment facilitates anti programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015, 61 (5), 1591-602.
43. Chen, I. X.; Chauhan, V. P.; Posada, J.; Ng, M. R.; Wu, M. W.; Adstamongkonkul,P.; Huang, P.; Lindeman, N.; Langer, R.; Jain, R. K., Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci U S A 2019.