簡易檢索 / 詳目顯示

研究生: 丁祈
Archana Ramchandra Deokar
論文名稱: Antimicrobial Property and Mechanistic Study of Acid-functionalized Carbon nanotubes and Magnetic Graphene
酸官能基奈米碳管和磁性石墨烯之抗菌性能和機制研究
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
凌永健
林嬪嬪
林立元
傅明仁
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 123
中文關鍵詞: 奈米碳管機制方法抗菌性能透射電子顯微鏡磁性石墨烯光熱
外文關鍵詞: Carbon nanotubes, Mechanistic approach, Antimicrobial, Transmission electron microscopy, Magnetic graphene, Photothermal
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Conventional antibiotic therapies are becoming less efficient owing to the emergence of antibiotic-resistance towards bacteria. The rising numbers of drug-resistant diseases will eventually lead to an “antibiotic apocalypse”. Development of novel antimicrobial material to effectively inhibit or kill microorganism is crucial. Nanoscience and nanotechnology, an emerging field of 21st century might play an important role to combat with these infections. Herein, with this motivation we made an attempt to coat acid-functionalized single-walled carbon nanotubes (AFSWCNTs) onto the paper to explore their interaction mechanism towards gram-positive and gram-negative bacteria by taking advantages of simple and environmentally friendly ultrasound-assisted method (Chapter 2). The fact that not only direct physical contact and piercing action but also AFSWCNTs molecular-scale interactions with bacterial cell membrane play an important role in increasing their accessibility into bacteria through the interaction with peptidoglycan becomes apparent in this study. These findings were well supported by results from attenuated total reflectance-Fourier transform infrared, X-ray photoelectron spectroscopy, and analytical scanning transmission electron microscopy combined with electron energy-loss spectroscopy measurements. We anticipate that the novel antibacterial mechanism by AFSWCNTs might bring a promising strategy to design new antibacterial materials against the drug- bacteria species.
    On the other hand, there is an urgent need to develop a low-cost, bulk mass production of rapid (within 10 min) and effective (~ 99% killing efficiency) antibacterial material that can combat life-threatening infections. With this motivation, we made an attempt to design a graphene-based photothermal agent, magnetic reduced graphene oxide functionalized with glutaraldehyde (MRGOGA), for efficient capture and effective killing of both gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacteria upon NIR laser irradiation. Furthermore, a comparative photothermal antibacterial property of graphene with its structural sibling i.e. CNTs was studied. We took advantage of the excellent photothermal properties of RGO upon NIR laser irradiation and glutaraldehyde as an efficient capturing agent towards both bacteria. Its magnetic characteristic facilitates the captured bacteria be readily trapped in a small volume by the external magnet. The synergetic effects increase the heating extent by MRGOGA upon NIR laser irradiation and the killing of the captured bacteria. The magnetic and low cytotoxicity properties of MRGOGA make it an ideal candidate for in vivo biomedical applications because of the advantages of easy mobilization at targeted position and minimum cellular damage.
    In line with the aforementioned work, owing to the graphene’s excellent photothermal properties there are plenty of rooms at the bottom. Graphene-based photothermal anticancer therapy might contribute towards a major hurdle of anticancer therapy i.e. multi-drug resistance.


    Chapter 1 Introduction 1.1 Nanomaterials………………………………………………………………….(17) 1.2 Carbon Nanotubes……………………………………………………………(18) 1.2.1 Synthesis methods…………………………………………………….(19) 1.2.1.1. Arc Discharge………………………………………………...(19) 1.2.1.2. Chemical Vapor Deposition………………………………….(20) 1.2.1.3. Laser Ablation Method……………………………………….(20) 1.2.2 Applications of Carbon Nanotubes…………………………………..(21) 1.3 Graphene-based Nanomaterials…………………………………………....(22) 1.3.1 Synthesis methods……………………………………………………..(22) 1.3.1.1. Exfoliation and Cleavage………………………………….......(23) 1.3.1.2. Thermal Chemical Vapor Deposition………………………….(24) 1.3.1.3. Chemical Methods, Thermal Decomposition, and Unzipping of Carbon Nanotubes...........................................................................(25) 1.3.2. Applications of Graphene…………………………………………….(25) 1.4 Magnetic Nanoparticles…………………………………………………......(27) 1.4.1 Synthesis Methods…………………………………………………......(28) 1.4.1.1. Co-precipitation………………………………………………..(28) 1.4.1.2. Thermal Decomposition……………………………………….(28) 1.4.1.2. Microemulsions………………………………………………..(29) 1.4.2 Applications of Magnetic Nanoparticles………………………….......(30) 1.5 REFERENCES……………………………………………………………(31-38) 1.6 TABLES…………………………………………………………………….(39) 1.7 FIGURES…………………………………………………………………...(39-45) Chapter 2: Single-walled carbon nanotubes coated antibacterial paper: Preparation and mechanistic study 2.1 Introduction……………………………………………………………….(46) 2.2 Materials and methods……………………………………………………(48) 2.2.1 Materials…………………………………………………………….(48) 2.2.2 Microwave-assisted functionalization of AFSWCNTs……………..(49) 2.2.3 Assessment of antibacterial activity………………………………....(50) 2.2.4 Cell membrane-integrity assay……………………………………....(50) 2.2.5 Measurement of RNA efflux………………………………………..(51) 2.2.6 X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy measurements………………………………………………………..(51) 2.2.7 Transmission electron microscopy measurement……………….......(52) 2.3 Results and discussion 2.3.1 Morphology and chemical composition of SP……………………....(52) 2.3.2 Direct physical contact of bacteria with SP…………………………(53) 2.3.3 Destruction of cell membrane by SP………………………………..(54) 2.3.4 Molecular-scale interactions of bacteria with SP…………………...(56) 2.3.5 Encapsulation of AFSWCNTs in bacteria…………………………..(57) 2.3.6 Mechanism of interaction…………………………………………..(59) 2.4 CONCLUSIONS………………………………………………………….(60) 2.5 REFERENCES…………………………………………………………(48-50) 2.6 TABLES …………………………………………………………………(51-52) 2.7 FIGURES………………………………………………………………..(53-66) Chapter 3: Comparative in vitro comparison of photothermal antibacterial activity of glutaraldehyde conjugated magnetic graphene and carbon nanotubes 3.1 Introduction………………………………………………………………………..(83) 3.2 Materials and methods…………………………………………………..(85) 3.2.1 Synthesis of GO…………………………………………………….(85) 3.2.2 Synthesis of MRGOGA…………………………………………….(85) 3.2.3 Synthesis of MCNGA………………………………………………(86) 3.2.4 Characterization of MRGOGA/MCNGA…………………………..(86) 3.2.5 Bacteria culture……………………………………………………..(87) 3.2.5 Assessment of photothermal treatment……………………………..(87) 3.2.6 Electron microscopy measurement…………………………………(88) 3.2.7 Integrity of cell membranes based on fluorescence assay………….(88) 3.2.8 MTT assay…………………………………………………………..(88) 3.3 Results and discussion…………………………………………………….(89) 3.3.1. Preparation and characterization of MRGO/MRGOGA/MCNGA...(89) 3.3.2. Magnetic properties of MRGOGA/MCNGA………………………(90) 3.3.3. Temperature evolution profile and Uv-Vis-NIR absorption of MRGO/MRGOGA/MCNGA………………………………………(90) 3.3.4. Bacteria capturing capabilities……………………………………..(91) 3.3.5. Antibacterial photothermal treatment………………………………(92) 3.3.6. Cytotoxicity studies……………………………………………..(95) 3.4 CONCLUSIONS……………………………………………………….(96) 3.4 REFERENCES……………………………………………………….(97-101) 3.5 TABLES……………………………………………………………….(102-104) 3.6 FIGURES……………………………………………………………...(105-112) Chapter 4: Summary and future perspectives 4.1 REFERENCES………………………………………………………..(118-119) 4.2 FIGURES………………………………………………………………(120-122)

    Chapter 1

    1) "Plenty of room" revisited. Nat Nano 2009, 4 (12), 781-781.
    2) Nanomaterials. European Commission. Last updated 18 October 2011.
    3) Rao, C. N. R. M. l. A. C. A. K., The chemistry of nanomaterials : synthesis, properties and applications in 2 volumes. Wiley-VCH: Weinheim, 2004.
    4) Edelstein, A. S. C. R. C., Nanomaterials : synthesis, properties, and applications. Institute of Physics Pub.: Bristol; Philadelphia, 1996.
    5) Xing, H. Y.; Bu, W. B.; Zhang, S. J.; Zheng, X. P.; Li, M.; Chen, F.; He, Q. J.; Zhou, L. P.; Peng, W. J.; Hua, Y. Q.; Shi, J. L., Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 2012, 33 (4), 1079-1089.
    6) Wang, Y. C.; Hu, R.; Lin, G. M.; Law, W. C.; Yong, K. T., Optimizing the aqueous phase synthesis of CdTe quantum dots using mixed-ligands system and their applications for imaging of live cancer cells and tumors in vivo. RSC Adv. 2013, 3 (23), 8899-8908.
    7) Akhavan, O.; Azimirad, R.; Safa, S.; Larijani, M. M., Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents. J. Mater. Chem. 2010, 20 (35), 7386-7392.
    8) Dorn, H. C.; Fatouros, P. P., Endohedral Metallofullerenes: Applications of a New Class of Carbonaceous Nanomaterials. Nanosci. Nanotech. Let. 2010, 2 (2), 65-72.
    9) Zhang, Y.; Nayak, T. R.; Hong, H.; Cai, W. B., Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 2012, 4 (13), 3833-3842.
    10) Zhang, Z.; Zhang, J.; Zhang, B. L.; Tang, J. L., Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 2013, 5 (1), 118-123.
    11) Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
    12) Cruz-Silva, E.; Lopez-Urias, F.; Munoz-Sandoval, E.; Sumpter, B. G.; Terrones, H.; Charlier, J. C.; Meunier, V.; Terrones, M., Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorus-Nitrogen-Doped Carbon Nanotubes. ACS Nano 2009, 3 (7), 1913-1921.
    13) Zhang, Q.; Huang, J. Q.; Qian, W. Z.; Zhang, Y. Y.; Wei, F., The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small 2013, 9 (8), 1237-1265.
    14) Lee, P. L.; Chiu, Y. K.; Sun, Y. C.; Ling, Y. C., Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon 2010, 48 (5), 1397-1404.
    15) Wu, H. X.; Liu, G.; Zhuang, Y. M.; Wu, D. M.; Zhang, H. Q.; Yang, H.; Hu, H.; Yang, S. P., The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents. Biomaterials 2011, 32 (21), 4867-4876.
    16) Ghule, K.; Ghule, A. V.; Chen, B. J.; Ling, Y. C., Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green. Chem. 2006, 8 (12), 1034-1041.
    17) Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1 (1), 50-56.
    18) Harrison, B. S.; Atala, A., Carbon nanotube applications for tissue engineering. Biomaterials 2007, 28 (2), 344-353.
    19) Hutchison, J. L.; Kiselev, N. A.; Krinichnaya, E. P.; Krestinin, A. V.; Loutfy, R. O.; Morawsky, A. P.; Muradyan, V. E.; Obraztsova, E. D.; Sloan, J.; Terekhov, S. V.; Zakharov, D. N., Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001, 39 (5), 761-770.
    20) Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E., Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. a-Mater. 2001, 72 (5), 573-580.
    21) Su, M.; Zheng, B.; Liu, J., A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 2000, 322 (5), 321-326.
    22) Ebbesen, T. W.; Ajayan, P. M., Large-Scale Synthesis of Carbon Nanotubes. Nature 1992, 358 (6383), 220-222.
    23) Ebbesen, T. W.; Hiura, H.; Fujita, J.; Ochiai, Y.; Matsui, S.; Tanigaki, K., Patterns in the Bulk Growth of Carbon Nanotubes. Chem. Phys. Lett. 1993, 209 (1-2), 83-90.
    24) Seraphin, S.; Zhou, D.; Jiao, J., Morphology and Yield of Carbon Clusters in Arc-Discharge Deposits. Carbon 1993, 31 (7), 1212-1216.
    25) Tada, H.; Saito, Y.; Hirata, M.; Hyodo, M.; Kawahara, H., A Novel Switchable Glazing Formed by Electrically Induced Chains of Suspensions. J. Appl. Phys. 1993, 73 (2), 489-493.
    26) Yakobson, B. I.; Smalley, R. E., Fullerene nanotubes: C-1000000 and beyond. Am. Sci. 1997, 85 (4), 324-337.
    27) Ajayan, P. M.; Iijima, S., Smallest Carbon Nanotube. Nature 1992, 358 (6381), 23-23.
    28) Iijima, S., Growth of Carbon Nanotubes. Mat. Sci. Eng B-Solid 1993, 19 (1-2), 172-180.
    29) Deokar, A. R.; Lin, L. Y.; Chang, C. C.; Ling, Y. C., Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J. Mater. Chem. B 2013, 1 (20), 2639-2646.
    30) Colomer, J. F.; Stephan, C.; Lefrant, S.; Van Tendeloo, G.; Willems, I.; Konya, Z.; Fonseca, A.; Laurent, C.; Nagy, J. B., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 2000, 317 (1-2), 83-89.
    31) Endo, M.; Takeuchi, K.; Kobori, K.; Takahashi, K.; Kroto, H. W.; Sarkar, A., Pyrolytic Carbon Nanotubes from Vapor-Grown Carbon-Fibers. Carbon 1995, 33 (7), 873-881.
    32) Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E., Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274), 483-487.
    33) Holloway, B. C. W. V. A.; Eklund, P. C. B. P. A.; Smith, M. W. N. N. V. A.; Jordan, K. C. N. N. V. A.; Shinn, M. N. N. V. A. Laser ablation for the synthesis of carbon nanotubes. US 8317983, 2012.
    34) Merchan-Merchan, W.; Saveliev, A. V.; Kennedy, L.; Jimenez, W. C., Combustion synthesis of carbon nanotubes and related nanostructures. Prog. Energ. Combust. 2010, 36 (6), 696-727.
    35) Levi-Polyachenko, N. H.; Merkel, E. J.; Jones, B. T.; Carroll, D. L.; Stewart, J. H., Rapid Photothermal Intracellular Drug Delivery Using Multiwalled Carbon Nanotubes. Mol . Pharmaceut .2009, 6 (4), 1092-1099.
    36) Wu, C. H.; Cao, C.; Kim, J. H.; Hsu, C. H.; Wanebo, H. J.; Bowen, W. D.; Xu, J.; Marshall, J., Trojan-Horse Nanotube On-Command Intracellular Drug Delivery. Nano. Lett. 2012, 12 (11), 5475-5480.
    37) Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Harutyunyan, A. R., Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep-Uk 2012, 2.
    38) Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M., Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc. 1994, 116 (17), 7935-7936.
    39) Fu, F. L.; Wang, Q., Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011, 92 (3), 407-418.
    40) Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191.
    41) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102 (30), 10451-10453.
    42) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
    43) Geim, A. K., Graphene: Status and Prospects. Science 2009, 324 (5934), 1530-1534.
    44) Viculis, L. M.; Mack, J. J.; Kaner, R. B., A chemical route to carbon nanoscrolls. Science 2003, 299 (5611), 1361-1361.
    45) Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E., Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274), 483-487.
    46) Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430 (1-3), 56-59.
    47) Horiuchi, S.; Gotou, T.; Fujiwara, M.; Asaka, T.; Yokosawa, T.; Matsui, Y., Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 2004, 84 (13), 2403-2405.
    48) Yuan, G. D.; Zhang, W. J.; Yang, Y.; Tang, Y. B.; Li, Y. Q.; Wang, J. X.; Meng, X. M.; He, Z. B.; Wu, C. M. L.; Bello, I.; Lee, C. S.; Lee, S. T., Graphene sheets via microwave chemical vapor deposition. Chem. Phys. Lett. 2009, 467 (4-6), 361-364.
    49) Cano-Marquez, A. G.; Rodriguez-Macias, F. J.; Campos-Delgado, J.; Espinosa-Gonzalez, C. G.; Tristan-Lopez, F.; Ramirez-Gonzalez, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantu, Y. I., Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano. Lett. 2009, 9 (4), 1527-1533.
    50) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458 (7240), 872-U5.
    51) Wu, Z. S.; Pei, S. F.; Ren, W. C.; Tang, D. M.; Gao, L. B.; Liu, B. L.; Li, F.; Liu, C.; Cheng, H. M., Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition. Adv. Mater. 2009, 21 (17), 1756-1760.
    52) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385-388.
    53) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6 (9), 652-655.
    54) Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem. 2009, 81 (6), 2378-2382.
    55) Alwarappan, S.; Erdem, A.; Liu, C.; Li, C. Z., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. J. Phys. Chem. C 2009, 113 (20), 8853-8857.
    56) Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y., Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17 (8), 1225-1236.
    57) Kohler, N.; Sun, C.; Fichtenholtz, A.; Gunn, J.; Fang, C.; Zhang, M. Q., Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006, 2 (6), 785-792.
    58) Takafuji, M.; Ide, S.; Ihara, H.; Xu, Z. H., Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem. Mater. 2004, 16 (10), 1977-1983.
    59) Lee, P. L.; Sun, Y. C.; Ling, Y. C., Magnetic nano-adsorbent integrated with lab-on-valve system for trace analysis of multiple heavy metals. J. Anal. Atom. Spectrom. 2009, 24 (3), 320-327.
    60) Klabunde, K. J., Nanoscale materials in chemistry. Wiley-Interscience: New York, 2001.
    61) Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S., Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 2010, 4 (7), 3979-3986.
    62) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126 (1), 273-279.
    63) Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater .2004, 3 (12), 891-895.
    64) Paul, B. K.; Moulik, S. P., Uses and applications of microemulsions. Curr. Sci. India 2001, 80 (8), 990-1001.
    65) Chikazumi, S.; Taketomi, S.; Ukita, M.; Mizukami, M.; Miyajima, H.; Setogawa, M.; Kurihara, Y., Physics of Magnetic Fluids. J. Magn. Magn. Mater. 1987, 65 (2-3), 245-251.
    66) Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bonnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F., Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Edit. 2004, 43 (33), 4303-4306.
    67) Kell, A. J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; Bergeron, M. G.; Simard, B., Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano 2008, 2 (9), 1777-1788.
    68) Gu, H. W.; Xu, K. M.; Xu, C. J.; Xu, B., Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 2006, (9), 941-949.
    69) Rao, C. N. R. M. l. A. C. A. K., The chemistry of nanomaterials : synthesis, properties and applications in 2 volumes. Wiley-VCH: Weinheim, 2004.
    70) Edelstein, A. S. C. R. C., Nanomaterials : synthesis, properties, and applications. Institute of Physics Pub.: Bristol; Philadelphia, 1996.

    Chapter 2

    1) D. Davies, Nat. Rev. Drug. Discov., 2003, 2, 114-122.
    2) J. W. Costerton, P. S. Stewart and E. P. Greenberg, Science, 1999, 284, 1318-1322.
    3) D. M. Siddiq and R. O. Darouiche, Nat. Rev. Urol., 2012, 9, 305-314.
    4) L. Hall-Stoodley, J. W. Costerton and P. Stoodley, Nat. Rev.Microbiol., 2004, 2, 95-108.
    5) S. Noimark, C. W. Dunnill, C. W. M. Kay, S. Perni, P. Prokopovich, S. Ismail, M. Wilson and I. P. Parkin, J. Mater. Chem., 2012, 22, 15388-15396.
    6) M. S. A. S. Shah, M. Nag, T. Kalagara, S. Singh and S. V. Manorama, Chem. Mater., 2008, 20, 2455-2460.
    7) K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. B. Lee, H. Suh and K. S. Choi, Biomaterials, 1998, 19, 851-859.
    8) I. Banerjee, R. C. Pangule and R. S. Kane, Adv. Mater., 2011, 23, 690-718.
    9) A. Kumar, P. K. Vemula, P. M. Ajayan and G. John, Nat. Mater., 2008, 7, 236-241.
    10) U. Shimanovich, A. Cavaco-Paulo, Y. Nitzan and A. Gedanken, Chem-Eur J., 2012, 18, 365-369.
    11) H. Yang, Y. Liu, Q. H. Shen, L. F. Chen, W. H. You, X. M. Wang and J. S. Sheng, J. Mater. Chem., 2012, 22, 24132-24138.
    12) P. Gunawan, C. Guan, X. H. Song, Q. Y. Zhang, S. S. J. Leong, C. Y. Tang, Y. Chen, M. B. Chan-Park, M. W. Chang, K. A. Wang and R. Xu, ACS Nano, 2011, 5, 10033-10040.
    13) D. Nepal, S. Balasubramanian, A. L. Simonian and V. A. Davis, Nano Lett., 2008, 8, 1896-1901.
    14) M. C. Wu, A. R. Deokar, J. H. Liao, P. Y. Shih, and Y. C. Ling, ACS Nano, 2013, 7, 1281-1290 .
    15) I. N. Kholmanov, M. D. Stoller, J. Edgeworth, W. H. Lee, H. F. Li, J. H. Lee, C. Barnhart, J. R. Potts, R. Piner, D. Akinwande, J. E. Barrick and R. S. Ruoff, ACS Nano, 2012, 6, 5157-5163.
    16) X. D. Wang, N. L. Zhou, J. Yuan, W. Y. Wang, Y. D. Tang, C. Y. Lu, J. Zhang and J. Shen, J. Mater. Chem., 2012, 22, 1673-1678.
    17) S. B. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. R. Jiang, J. Kong and Y. Chen, ACS Nano, 2011, 5, 6971-.6980
    18) P. L. Lee, Y. K. Chiu, Y. C. Sun and Y. C. Ling, Carbon, 2010, 48, 1397-1404.
    19) H. X. Wu, G. Liu, Y. M. Zhuang, D. M. Wu, H. Q. Zhang, H. Yang, H. Hu and S. P. Yang, Biomaterials, 2011, 32, 4867-4876.
    20) K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, Green Chem., 2006, 8, 1034-1589.
    21) Y. Guo, D. L. Shi, H. S. Cho, Z. Y. Dong, A. Kulkarni, G. M. Pauletti, W. Wang, J. Lian, W. Liu, L. Ren, Q. Q. Zhang, G. K. Liu, C. Huth, L. M. Wang, R. C. Ewing, Adv. Funct. Mater., 2008, 18, 2489-2497.
    22) D. D. Liu, C. Q. Yi, D. W. Zhang, J. C. Zhang, M. S. Yang, ACS Nano, 2010, 4, 2185-2195.
    23) K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. P. Briand, S. Muller, M. Prato, A. Bianco, Nat. Nanotechnol. 2007, 2, 108-113.
    24) Y. Chen, K. G. Qu, C. Q. Zhao, L. Wu, J. S. Ren, J. S. Wang and X. G. Qu, Nat. Commun., 2012, 3.
    25) M. Prato, K. Kostarelos, A. Bianco, Accounts.Chem. Res., 2008, 41, 60-68.
    26) A. E. Porter, M. Gass, J. S. Bendall, K. Muller, A. Goode, J. N. Skepper, P. A. Midgley and M. Welland, ACS Nano, 2009, 3, 1485-1492.
    27) S. B. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. H. Yang and Y. Chen, ACS Nano, 2009, 3, 3891-3902.
    28) F. Ahmed, C. M. Santos, R. A. M. V. Vergara, M. C. R. Tria, R. Advincula and D. F. Rodrigues, Environ. Sci. Technol., 2012, 46, 1804-1810.
    29) O. Akhavan, R. Azimirad, S. Safa and M. M. Larijani, J. Mater. Chem., 2010, 20, 7386-7392.
    30) A. S. Brady-Estevez, S. Kang and M. Elimelech, Small, 2008, 4, 481-484.
    31) S. Kang, M. Herzberg, D. F. Rodrigues and M. Elimelech, Langmuir, 2008, 24, 6409-6413.
    32) S. Kang , M. Pinault , L. D. Pfefferle , and M. Elimelech, Langmuir, 2007, 23, 8670–8673.
    33) T. Mathur, V. Kalia, T. K. Barman, S. Singhal, S. Khan, D. J. Upadhyay, A. Rattan and V. S. Raj, Int. J. Antimicrob. Ag., 2013, 41, 36-40.
    34) J. Nakamura, H. Yamashiro, S. Hayashi, M. Yamamoto, K. Miura, S. Xu, T. Doi, H. Maki, O. Yoshida and H. Arimoto, Chem-Eur. J., 2012, 18, 12681-12689.
    35) J. Hoque, P. Akkapeddi, V. Yarlagadda, D. S. S. M. Uppu, P. Kumar and J. Haldar, Langmuir, 2012, 28, 12225-12234.
    36) K. S. Suslick, S. B. Choe, A. A. Cichowlas, M. W. Grinstaff, Nature, 1991, 353, 414-416.
    37) G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Adv. Funct. Mater., 2009, 19, 842-852.
    38) J. H. Bang, K. S. Suslick, Adv. Mater., 2010, 22, 1039-1059.
    39) U. Shimanovich, A. Cavaco-Paulo, Y. Nitzan, A. Gedanken, Chem-Eur. J., 2012, 18, 365-369.
    40) K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, Green Chem., 2006, 8, 1034-1041.
    41) I. Perelshtein, G. Applerot, N. Perkas, J. Grinblat, E. Hulla, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, A. Gedanken, ACS. Appl. Mater. Inter., 2010, 2, 1999-2004.
    42) S. Wang, L. A. L. Tang, Q. L. Bao, M. Lin, S. Z. Deng, B. M. Goh and K. P. Loh, J. Am. Chem. Soc., 2009, 131, 16832-16837.
    43) O. Akhavan and E. Ghaderi, J. Phys. Chem. C., 2009, 113, 20214-20220.
    44) W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge and S. C. B. Myneni, Langmuir, 2004, 20, 11433-11442.
    45) R. Gottesman , S. Shukla , N. Perkas, L. A. Solovyov , Y. Nitzan , and A. Gedanken, Langmuir, 2011, 27 (2), 720–726.
    46) R. G. Liu, H. Yu and Y. Huang, Cellulose, 2005, 12, 25-34.
    47) O. Akhavan and E. Ghaderi, ACS Nano, 2010, 4, 5731-5736.
    48) Y. F. Dufrene, A. VanderWal, W. Norde and P. G. Rouxhet, J. Bacteriol., 1997, 179, 1023-1028.
    49) A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley and M. Welland, Nat. Nanotechnol., 2007, 2, 713-717.
    50) J. L. Liu, Z. Luo and S. Bashir, Biomater. Sci., 2013, 1, 194-201.
    51) J. Y. Chang, B. Lo, M. Jeng, S. H. Tzing and Y. C. Ling, Appl. Phys. Lett., 2004, 85, 2613.
    52) T. Stockli, J. M. Bonard, A. Chatelain, Z. L. Wang and P. Stadelmann, Phys. Rev. B, 2000, 61, 5751-5759.
    53) L. Leone, D. Ferri, C. Manfredi, P. Persson, A. Shchukarev, S. Sjoberg and J. Loring, Environ. Sci. Technol., 2007, 41, 6465-6471.
    54) Microbiology: A Human Perspective, ed. E. W. Nester, D. G. Anderson, C.E .Jr. Roberts, M. T. Nester, MaGraw-Hill, 2007.
    55) A. J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M. G. Bergeron and B. Simard, ACS Nano, 2008, 2, 1777-1788.
    56) N. Tsao, T. Y. Luh, C. K. Chou, T. Y. Chang, J. J. Wu, C. C. Liu and H. Y. Lei, J. Antimicrob. Chemoth., 2002, 49, 641-649.
    57) A. M. Koch, F. Reynolds, H. R. Merkle, R. Weissleder and L. Josephson, Chembiochem, 2005, 6, 337-345.
    58) G. Gollavelli, Y. C. Ling, ACS Sustainable Chem. Eng., 2012, DOI: 10.1021/sc300112.

    Chapter 3

    1) Kumarasamy, K. K.; Toleman, M. A.; Walsh, T. R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C. G.; Irfan, S.; et al. Emergence of a New Antibiotic Resistance Mechanism In India, Pakistan, and the UK: A Molecular, Biological, and Epidemiological Study. Lancet. Infect. Dis. 2010, 10, 597-602.
    2) Tian, J.; Wong, K. K. Y.; Ho, C. M.; Lok, C. N.; Yu, W. Y.; Che, C. M.; Chiu, J. F.; Tam, P. K. H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129-136.
    3) Huang, W. C.; Tsai, P. J.; Chen, Y. C. Multifunctional Fe3O4@Au Nanoeggs As Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria. Small 2009, 5, 51-56.
    4) Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury. Adv. Funct. Mater. 2009, 19, 842-852.
    5) Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Gold Nanoparticles: Interesting Optical Properties and Recent Applications In Cancer Diagnostic and Therapy. Nanomedicine 2007, 2, 681-693.
    6) Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon Nanotubes As Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11600-11605.
    7) Kim, J. W.; Shashkov, E. V.; Galanzha, E. I.; Kotagiri, N.; Zharov, V. P. Photothermal Antimicrobial Nanotherapy and Nanodiagnostics with Self-Assembling Carbon Nanotube Clusters. Lasers. Surg. Med. 2007, 39, 622-634.
    8) Sherlock, S. P.; Tabakman, S. M.; Xie, L. M.; Dai, H. J. Photothermally Enhanced Drug Delivery by Ultrasmall Multifunctional FeCo/Graphitic Shell Nanocrystals. ACS Nano 2011, 5, 1505-1512.
    9) Weissleder, R. A Clearer Vision for In Vivo Imaging. Nat. Biotechnol. 2001, 19, 316-317.
    10) Moon, H. K.; Lee, S. H.; Choi, H. C. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 2009, 3, 3707-3713.
    11) Kang, B.; Yu, D. C.; Dai, Y. D.; Chang, S. Q.; Chen, D.; Ding, Y. T. Cancer-Cell Targeting and Photoacoustic Therapy Using Carbon Nanotubes As "Bomb" Agents. Small 2009, 5, 1292-1301.
    12) Liu, S. B.; Wei, L.; Hao, L.; Fang, N.; Chang, M. W.; Xu, R.; Yang, Y. H.; Chen, Y. Sharper and Faster "Nano Darts" Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano 2009, 3, 3891-3902.
    13) Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670-8673.
    14) Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene In Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett. 2010, 10, 3318-3323.
    15) Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano 2011, 5, 7000-7009.
    16) Markovic, Z. M.; Harhaji-Trajkovic, L. M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Arsikin, K. M.; Jovanovic, S. P.; Pantovic, A. C.; Dramicanin, M. D.; Trajkovic, V. S. In Vitro Comparison of the Photothermal Anticancer Activity of Graphene Nanoparticles and Carbon Nanotubes. Biomaterials 2011, 32, 1121-1129.
    17) Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4, 5731-5736.
    18) Akhavan, O.; Ghaderi, E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria In Solar Light Irradiation. J. Phys. Chem. C 2009, 113, 20214-20220.
    19) Gorman, S. P.; Scott, E. M.; Russell, A. D. Anti-Microbial Activity, Uses and Mechanism of Action of Glutaraldehyde. J. Appl. Bacteriol. 1980, 48, 161-190.
    20) Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4, 5731-5736.
    21) Wang, S.; Tang, L. A. L.; Bao, Q. L.; Lin, M.; Deng, S. Z.; Goh, B. M.; Loh, K. P. Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. J. Am. Chem. Soc. 2009, 131, 16832-16837.
    22) Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 2010, 4, 3979-3986.
    23) Borick, P. M.; Dondersh. Fh; Chandler, V. L. Alkalinized Glutaraldehyde New Antimicrobial Agent. J. Pharm. Sci. 1964, 53, 1273-1275.
    24) Nester E. W; Anderson D. G; Jr. Roberts C.E; Nester M.T. Microscopy and Cell Structure. In Microbiology: A Human Perspective; Peterson K.A., Eds.; MaGraw-Hill: New York, 2007; pp 55-82.
    25) Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-Based Antibacterial Paper. ACS Nano 2010, 4, 4317-4323.
    26) Ma, J. Z.; Zhang, J. T.; Xiong, Z. G.; Yong, Y.; Zhao, X. S. Preparation, Characterization and Antibacterial Properties of Silver-Modified Graphene Oxide. J. Mater. Chem. 2011, 21, 3350-3352.
    27) Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile Synthesis and Application of Ag-Chemically Converted Graphene Nanocomposite. Nano. Res. 2010, 3, 339-349.
    28) You, J.; Shao, R.; Wei, X.; Gupta, S.; Li, C. Near-Infrared Light Triggers Release of Paclitaxel from Biodegradable Microspheres: Photothermal Effect and Enhanced Antitumor Activity. Small 2010, 6, 1022-1031.
    29) Choi, K. H.; Lee, H. J.; Park, B. J.; Wang, K. K.; Shin, E. P.; Park, J. C.; Kim, Y. K.; Oh, M. K.; Kim, Y. R. Photosensitizer and Vancomycin-Conjugated Novel Multifunctional Magnetic Particles As Photoinactivation Agents for Selective Killing of Pathogenic Bacteria. Chem. Commun. 2012, 48, 4591-4593.
    30) Adams, M. R.; Moss, M. O. Food microbiology. RSC Publishing: Cambridge; 2008.
    31) Kennedy, J.; Blair, I. S.; McDowell, D. A.; Bolton, D. J. An Investigation of the Thermal Inactivation of Staphylococcus Aureus and the Potential for Increased Thermotolerance As a Result of Chilled Storage. J. Appl. Microbiol. 2005, 99, 1229-1235.
    32) Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C. N. R.; Koyakutty, M. Differential Nano-Bio Interactions and Toxicity Effects of Pristine Versus Functionalized Graphene. Nanoscale 2011, 3, 2461-2464.
    33) Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene In Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett. 2010, 10, 3318-3323.
    34) Di Virgilio, A. L.; Reigosa, M.; Arnal, P. M.; de Mele, M. F. L. Comparative Study of the Cytotoxic and Genotoxic Effects of Titanium Oxide and Aluminium Oxide Nanoparticles In Chinese Hamster Ovary (CHO-K1) Cells. J. Hazard. Mater. 2010, 177, 711-718.

    Chapter 4

    1) World Health, O., The evolving threat of antimicrobial resistance :opinions for action. World Health Organization: Geneva, 2012.
    2) Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
    3) Liu, S. B.; Wei, L.; Hao, L.; Fang, N.; Chang, M. W.; Xu, R.; Yang, Y. H.; Chen, Y., Sharper and Faster "Nano Darts" Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano 2009, 3 (12), 3891-3902.
    4) Mathur, T.; Kalia, V.; Barman, T. K.; Singhal, S.; Khan, S.; Upadhyay, D. J.; Rattan, A.; Raj, V. S., Anti-anaerobic potential of ranbezolid: insight into its mechanism of action against Bacteroidesfragilis. Int. J.Antimicrob.Ag. 2013, 41 (1), 36-40.
    5) Nakamura, J.; Yamashiro, H.; Hayashi, S.; Yamamoto, M.; Miura, K.; Xu, S.; Doi, T.; Maki, H.; Yoshida, O.; Arimoto, H., Elucidation of the Active Conformation of Vancomycin Dimers with Antibacterial Activity against Vancomycin-Resistant Bacteria. Chem-Eur. J. 2012, 18 (40), 12681-12689.
    6) Hoque, J.; Akkapeddi, P.; Yarlagadda, V.; Uppu, D. S. S. M.; Kumar, P.; Haldar, J., Cleavable Cationic Antibacterial Amphiphiles: Synthesis, Mechanism of Action, and Cytotoxicities. Langmuir 2012, 28 (33), 12225-12234.
    7) Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine-Uk 2007, 2 (5), 681-693.
    8) Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. P. Natl. Acad. Sci. USA 2005, 102 (33), 11600-11605.
    9) Kim, J. W.; Shashkov, E. V.; Galanzha, E. I.; Kotagiri, N.; Zharov, V. P., Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Laser. Surg. Med.2007, 39 (7), 622-634.
    10) Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A., Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano.Lett. 2010, 10 (9), 3318-3323.
    11) https://sitn.hms.harvard.edu/sitnflash_wp/2011/06/issue95/
    12) Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191.
    13) (a) Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y., Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5 (9), 6971-6980; (b) Akhavan, O.; Ghaderi, E., Toxicity of Graphene and Graphene Oxide NanowallsAgainst Bacteria. ACS Nano 2010, 4 (10), 5731-5736; (c) Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H., Graphene-Based Antibacterial Paper. ACS Nano 2010, 4 (7), 4317-4323.
    14) Schoen, D. T.; Schoen, A. P.; Hu, L. B.; Kim, H. S.; Heilshorn, S. C.; Cui, Y., High Speed Water Sterlization Using One-Dimensional Nanostructures. Nano.Lett. 2010, 10 (9), 3628-3632.
    15) Wu, M. C.; Deokar, A. R.; Liao, J. H.; Shih, P. Y.; Ling, Y. C., Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria. ACS Nano 2013, 7 (2), 1281-1290.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE