簡易檢索 / 詳目顯示

研究生: 李欣頤
Lee, Hsin-Yi
論文名稱: 應用於光學雷達之電磁驅動壓阻感測CMOS掃描鏡
An Electromagnetically Driven, Piezoresistively Sensed CMOS Scanning Mirror for LiDAR Applications
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 林凡異
Lin, Fan-Yi
鄭裕庭
Cheng, Yu-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 93
中文關鍵詞: 微機電光達電磁式掃描鏡壓阻感測
外文關鍵詞: MEMS LiDAR, Electromagnetic, Scanning Mirror, Piezoresistive Sensing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究期望設計一個應用於光達系統的電磁式驅動微機電掃描鏡,相較於其
    他應用,此研究希望製作出擁有較大鏡面尺寸及轉動角度的掃描鏡,為了感測結構轉動時的角度,所以利用多晶矽及N-well製作壓阻轉角感測器,透過掃描鏡轉動帶動壓阻產生形變,使壓阻阻值變化,進而產生電壓訊號以進行轉角感測。
    本研究使用TSMC 2P4M 0.35 μm製程,將電磁式驅動掃描鏡結構及轉角感測電路整合於單一晶片上,晶片面積12 mm × 10 mm,另外針對後製程進行優化,以精準、低成本的方式開發一套完整的後製程流程,經量測後得到快軸同相位擺動模態的共振頻率為1205 Hz、慢軸扭轉模態的共振頻率為418 Hz,藉由掃描鏡反射在屏幕上的雷射掃描軌跡量測光學轉角,在快軸同相位擺動模態下,驅動電流為24.85 mApp時,快軸光學轉角可達37.65°、在慢軸扭轉模態下,驅動電流為3.728 mApp時,慢軸光學轉角約為19.06°,規格符合地面機器人的光達系統應用。感測電路部分則完成以壓阻感測器感測結構轉動角度並驗證以N-well作為壓阻材料的感測器其感測度較多晶矽壓阻感測器的感測度高。

    關鍵字:微機電光達、電磁式、掃描鏡、壓阻感測。


    An electromagnetically driven scanning mirror is studied in this thesis for application in a LiDAR system. The scanning mirror is desired to have a larger mirror plate size and a larger rotation angle than those for other applications. In order to sense the rotation angle, piezoresistive sensors made of polysilicon and N-well are deposited on the structure. The piezoresistives change associated with the rotation angle is converted to a voltage signal by on-chip circuits.
    In this study, the TSMC 2P4M 0.35 μm process was used to integrate the electromagnetically driven scanning mirror and the sensing circuit on a chip, with a chip area of 12 mm × 10 mm. In addition, for post-process optimization, a precise and low-cost method is used to develop a complete set of post-production process. The measured fast- and slow-axis resonant frequencies are 1205 Hz and 418 Hz, respectively. The optical rotation angle is measured by the laser trajectory reflected by the mirror plate on the screen. The fast- and slow-axis optical angle are 37.65° and 19.06° at the driving currents of 24.85 mApp, and 3.728 mApp, respectively. The design meets the LiDAR specifications for the ground robotics application. As for the sensing performance, the sensitivity of N-well piezoresistor is higher than that of polysilicon piezoresistor.

    Keywords: MEMS LiDAR, Electromagnetic, Scanning Mirror, Piezoresistive Sensing.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究動機 9 1-4 晶片系統架構 11 第二章 微掃描鏡結構設計與製作 14 2-1 掃描機制 14 2-2 解析度計算 15 2-3 勞倫茲力致動原理 19 2-4 結構分析與設計 22 2-5 結構模擬 27 2-6 後製程設計 34 2-7 磁場模擬 37 2-8 電路板設計 40 2-9 磁鐵固定架設計 41 第三章 感測電路設計與模擬 43 3-1 感測原理 43 3-2 感測電路 46 第四章 量測結果與討論 50 4-1 後製程量測 50 4-2 後製程討論 54 4-3 結構模態量測 58 4-4 光學量測 61 4-5 電路量測 65 第五章 結論與未來工作 77 5-1 研究結果討論 77 5-2 未來工作 80 參考文獻 81 附錄 87 (a) 旋塗機參數測試 87 (b) 測試側向蝕刻結構 87 (c) 其他晶片量測數據 88

    [1] A. Kasturi, V. Milanović, D. Lovell, F. Hu, D. Ho, Y. Su and Lj. Ristic, “Comparison of MEMS mirror LiDAR architectures,” Proc. SPIE, vol. 11293, Feb. 2020.
    [2] J. Liu, Q. Sun, Z. Fan and Y. Jia, “TOF Lidar Development in Autonomous Vehicle,” 2018 IEEE 3rd Optoelectronics Global Conference, 2018, pp. 185-190.
    [3] J. Hu, B. Liu, R. Ma, M. Liu and Z. Zhu, “A 32x 32-Pixel Flash LiDAR Sensor With Noise Filtering for High-Background Noise Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1-12, 2021.
    [4] P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie and Edward A. Watson, “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems,” Proc. IEEE, vol. 97, no. 6, pp. 1078-1096, Jun. 2009.
    [5] Y. Wang and M. C. Wu, “Micromirror based optical phased array for wide-angle beamsteering,” 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, 2017, pp. 897-900.
    [6] D. Wang, C. Watkins and H. Xie, “MEMS mirrors for LiDAR: A review,” Micromachines, vol. 11, no. 5, p. 456, Apr. 2020.
    [7] H.W. Yoo, N. Druml, D. Brunner, C. Schwarzl, T. Thurner, M. Hennecke and G. Schitter, “MEMS-based lidar for autonomous driving,” Elektrotechnik & Informationstechnik, vol. 135, pp. 408-415, 2018.
    [8] T. Raj, F. Hashim, A. Huddin, M. Ibrahim and A. Hussain, “A Survey on LiDAR Scanning Mechanisms,” Electronics, vol. 9, no. 5, p. 741, 2020.
    [9] K. E. Petersen, “Silicon torsional scanning mirror,” IBM J. Res. Develop., vol. 24, no. 5, pp. 631-637, 1980.
    [10] S. T. S. Holmström, U. Baran and H. Urey, “MEMS laser scanners: A review,” J. Microelectromechanical Systems, vol. 23, no. 2, pp. 259-275, Apr. 2014.
    [11] L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” Proc. IEEE LEOS Summer Topical Meeting on Optical MEMS, Monterey, CA, Aug. 20-22, 1998.
    [12] P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE, vol. 5604, pp.195-207, Oct. 2004.
    [13] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE, vol. 86, no. 8, pp. 1687-1704, Aug. 1998.
    [14] W. C. Tang, T. C. H. Nguyen, M. W. Judy and R. T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators A: Physical, vol. 21, no. 1, pp. 328-331, Feb. 1990.
    [15] A. Selvakumar, K. Najafi, W. H. Juan and S. Pang, “Vertical comb array microactuators,” Proc. IEEE Micro Electro Mechanical Systems, Amsterdam, Netherlands, 1995, pp. 43-48.
    [16] A. Selvakumar and K. Najafi, “Vertical comb array microactuators,” J. Microelectromechanical Systems, vol. 12, no. 4, pp. 440-449, Aug. 2003.
    [17] H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Selected Topics in Quantum Electronics, vol. 6, no. 5, pp. 715-722, Sept.-Oct. 2000.
    [18] N. Asada, H. Matsuki, K. Minami and M. Esashi, “Silicon micromachined two-dimensional galvano optical scanner,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4647-4649, Nov. 1994.
    [19] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromechanical Systems, vol. 15, no. 4, pp. 786-794, Aug. 2006.
    [20] C.-H. Ji, S.-H. Ahn, K.-C. Song, H.-K. Yoon, M. Choi, S.-C. Kim and J.-U. Bu, “Dual-axis electromagnetic scanning micromirror using radial magnetic field,” 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, Jan. 2006.
    [21] I. Aoyagi, K. Shimaoka, S. Kato, W. Makishi, Y. Kawai, S. Tanaka, T. Ono, M. Esashi and K. Hane “2-axis MEMS scanner for a laser range finder,” 16th International Conference on Optical MEMS and Nanophotonics, Istanbul, Turkey, 2011, pp. 39-40.
    [22] J.-H. Kim, S.-W. Lee, H.-S. Jeong, S.-K. Lee, C.-H. Ji and J.-H. Park, “Electromagnetically actuated 2-axis scanning micromirror with large aperture and tilting angle for LIDAR applications,” 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, Jun. 2015, pp. 839-842.
    [23] J.-H. Kim, H. Jeong, S.-K. Lee, C.-H. Ji and J.-H. Park, “Electromagnetically actuated biaxial scanning micromirror fabricated with silicon on glass wafer,” Microsystem Technologies, vol. 23, no. 6, pp. 2075-2085, 2016.
    [24] L. Ye, G. Zhang and Z. You, “Large-aperture kHz operating frequency Ti-alloy based optical micro scanning mirror for LiDAR application,” Micromachines, vol. 8, no. 4, p. 120, Apr. 2017.
    [25] K. Uchino, “Piezoelectric actuators 2006,” J. Electroceramics, vol. 20, pp. 301-311, Jul. 2007.
    [26] P. Muralt, “Piezoelectric thin films for MEMS,” Integrated Ferroelectrics, vol. 17, no. 1, pp. 297-307, Aug. 1997.
    [27] M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita and H. Toshiyoshi, “A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display,” IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, Big Sky, MT, USA, Aug. 2006, pp. 25-26.
    [28] L. Ye, G. Zhang, Z. You and C. Zhang, “A 2D resonant MEMS scanner with an ultra-compact wedge-like multiplied angle amplification for miniature LIDAR application,” 2016 IEEE SENSORS, Orlando, FL, USA, 2016, pp. 1-3.
    [29] L. Ye, G. Zhang and Z. You, “5 V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application,” Sensors, vol. 17, no. 3, p. 521, Mar. 2017.
    [30] C. Zhang, G. Zhang and Z. You, “A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors,” Sensors, vol. 9, no. 1, pp. 631-644, Jan. 2009.
    [31] U. Baran, D. Brown, S. Holmstrom, D. Balma, W. O. Davis, P. Muralt and H. Urey, “Resonant PZT MEMS scanner for high-resolution displays,” J. Microelectromechanical Systems, vol. 21, no. 6, pp. 1303-1310, Dec. 2012.
    [32] L. Zhou, X. Zhang and H. Xie, “An electrothermal Cu/W bimorph tip-tilt-piston MEMS mirror with high reliability,” Micromachines, vol. 10, no. 5, p. 323, May 2019.
    [33] Y. Tang, J. Li, L. Xu and H. Xie, “A 2D electrothermal micromirror with feedback based on Hall-effect of piezoresistive sensors,” Proc. SPIE, vol. 11697, Mar. 2021.
    [34] P. Wang, Y. Liu, D. Wang, H. Liu, W. Liu and H. Xie, “Stability study of an electrothermally-actuated MEMS mirror with Al/SiO2 bimorphs,” Micromachines, vol. 10, no. 10, p. 693, Oct. 2019.
    [35] A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu and M. S.-C. Lu, “An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical, vol. 222, pp. 122-129, Feb. 2015.
    [36] H. Lin, T.-W. Lin, A. C.-L. Hung and M. S.-C. Lu, “A bi-axial capacitive scanning mirror with closed-loop control,” 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, Northern Ireland, UK, Jan. 2018, pp. 567-570.
    [37] Z.-H. Li, Y.-T. Lin and M. S.-C. Lu, “An electromagnetically-driven piezoresistively sensed CMOS MEMS scanning mirror for projection display,” Proc. Eurosensors, Paris, France, Sept. 3-6, 2017.
    [38] C.-C. Tsai and M. S.-C. Lu, “A closed-loop controlled CMOS MEMS biaxial scanning mirror for projection display,” 2019 IEEE Int. Conf. on Micro Electro Mechanical Systems, Jan. 27-31, Seoul, Korea, 2019, pp. 982-985.
    [39] C.-C. Tsai, Z.-H. Li, Y.-T. Lin and M. S.-C. Lu, “A closed-loop controlled CMOS MEMS biaxial scanning mirror for projection displays,” IEEE Sensors Journal, vol. 20, no. 1, pp. 242-249, Jan. 2020.
    [40] J. Janes and T. Giese, “2D MEMS scanning LIDAR with sub-Nyquist sampling, set-up and functionality”, Proc. SPIE, vol. 9495, May 2015.
    [41] A. Kasturi, V. Milanović, F. Hu and H. Kim, “Iterative learning control (ILC) algorithm for greatly increased bandwidth and linearity of MEMS mirrors in LiDAR and related imaging applications”, Proc. SPIE, vol. 10545, Feb. 2018.
    [42] L. Ye, G. Zhang, Z. You and C. Zhang, “A 2D resonant MEMS scanner with an ultra-compact wedge-like multiplied angle amplification for miniature LIDAR application,” 2016 IEEE SENSORS, 2016, pp. 1-3.
    [43] U. Hofmann, M. Oldsen, H.J. Quenzer, J. Janes, M. Heller, M. Weiss, G Fakas, L. Ratzmann, E. Marchetti, F. D’Ascoli, M. Melani, L. Bacciarelli, E. Volpi, F.
    Battini, L. Mostardini, F. Sechi, M. De Marinis and B. Wagner, “Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays”, Proc. SPIE, vol. 6887, Feb. 2008.
    [44] S.-Y. Kang, J.-H. Park and C.-H. Ji, “Design optimization of a 6.4 mm-diameter electromagnetic 2D scanning micromirror,” Optics Express, vol 28, no. 21, pp. 31272-31286, Oct. 2020.
    [45] H. Urey, D. Wine and T. Osborn, “Optical performance requirements for MEMS-scanner-based microdisplays,” Proc. SPIE, vol. 4178, pp.176-185, Aug. 2000.
    [46] J.-Y. Hwang, J.-U. Bu and C.-H. Ji, “Low power electromagnetic scanning micromirror for LiDAR system,” IEEE Sensors Journal, vol. 21, no. 6, pp. 7358-7366, Mar. 2021.

    QR CODE