研究生: |
張 棋 Chang, Chi |
---|---|
論文名稱: |
太陽能史特林引擎水冷降溫及產氫 Solar Stirling Engine Water Cooling and Hydrogen Production |
指導教授: |
李明蒼
Lee, Ming-Tsang |
口試委員: |
陳玉彬
Chen, Yu-Bin 林大偉 Lin, Ta-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 26 |
中文關鍵詞: | 太陽能史特林引擎 、甲醇水蒸氣重組反應 、廢熱利用 |
外文關鍵詞: | Solar-powered Stirling engine, Steam-methanol reforming, waste heat recovery |
相關次數: | 點閱:32 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球對於可再生能源需求的日益增加,太陽能史特林引擎(Solar energy Stirling Engine)因其較高能源轉換效率而受到廣泛關注,同時氫能源也是一種乾淨的燃料。本研究提出一種太陽能史特林引擎水冷及產氫技術。利用史特林引擎的廢熱加熱甲醇水溶液以及觸媒重組器,進行甲醇水氣重組(Steam Methanol Reforming, SMR)反應產出氫氣,同時提高引擎的效率。
相較於空氣冷卻,水冷預期可有效增加史特林引擎的冷熱端溫差,並且利用引擎散熱端的廢熱將甲醇水溶液蒸發進行重組反應產生氫氣。本研究通過建立實驗裝置,驗證此概念的可行性。此外,根據實際觀測數據,相較於空氣冷卻,水冷太陽能史特林引擎的效率可有效提高。同時,本研究也設計了雙層重組器,相較於單層重組器,可顯著提升產氫效率。
As global demand for renewable energy continues to increase, solar energy Stirling engines have garnered widespread attention due to their relatively high energy conversion efficiency, while hydrogen energy is also recognized as a clean fuel. This study proposes a solar energy Stirling engine combined with water cooling and hydrogen production technology. The waste heat from the Stirling engine is used to heat a methanol-water solution and a catalytic reformer, facilitating the Steam Methanol Reforming (SMR) reaction to produce hydrogen while simultaneously improving the engine's efficiency. Compared to air cooling, water cooling is expected to effectively increase the temperature difference between the hot and cold ends of the Stirling engine. Additionally, the waste heat from the engine's cooling end is utilized to evaporate the methanol-water solution, driving the reforming reaction to produce hydrogen. This study establishes an experimental setup to verify the feasibility of this concept. Furthermore, based on actual observational data, the efficiency of the water-cooled solar energy Stirling engine is significantly improved compared to air cooling. Additionally, a dual-layer reformer was designed in this study, which significantly enhances hydrogen production efficiency compared to a single-layer reformer.
[1] J. S. Suh, M. T. Lee, R. Greif & C. P. Grigoropoulos, "A study of steam methanol reforming in a microreactor. " Journal of Power Sources. vol.173(1), pp.458-466. 2007.
[2] M. T. Lee, D. J. Hwang, R. Greif, & C. P. Grigoropoulos, "Nanocatalyst fabrication and the production of hydrogen by using photon energy." International Journal of Hydrogen Energy, vol.34(4), pp.1835-1843. 2009.
[3] M. T. Lee, M. Werhahn, D. J. Hwang, N. Hotz, R. Greif, D. Poulikakos, & C. P. Grigoropoulos, "Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst." International Journal of Hydrogen Energy, vol.35(1) pp.118-126. 2010
[4] H. Nakajima, D. Lee, M. T. Lee, & C. P. Grigoropoulos, "Hydrogen production with CuO/ZnO nanowire catalyst for a nanocatalytic solar thermal steam-methanol reformer." International Journal of Hydrogen Energy, vol.41(40), pp.1-5. 2016.
[5] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, al. "Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell." Nano letters, vol.11, pp.666-671. 2011.
[6] 沈軒瑢,“太陽熱能甲醇水汽重組產氫研究”,國立中興大學機械工程學系,2020。
[7] S. Ranieri, G. A. Prado, & B. D. MacDonald,"Efficiency reduction in stirling engines resulting from sinusoidal motion." Energies, vol.11(11), 2887, 2018.
[8] C. Dobre, L. Grosu, M. Costea, & M. Constantin,"Beta type Stirling engine. Schmidt and finite physical dimensions thermodynamics methods faced to experiments."Entropy, vol.22(11), 1278. 2020
[9] H. Karabulut, H. S. Yücesu, C. Çınar, & F. Aksoy. "An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources." Applied Energy, vol.86(1), pp.68-73. ,2009.
[10] C. Cinar, S. Yucesu, T. Topgul, & M. Okur, "Beta-type Stirling engine operating at atmospheric pressure. "Applied Energy, vol.81, pp.351-357, 2005.
[11] H.-S. Yang, H.-Q. Zhu, & X.-Z Xiao. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms." Energy, vol.275, 2023.
[12] A. Sripakagorn, & C. Srikam. "Design and performance of a moderate temperature difference Stirling engine." Renewable Energy, vol.36(7), pp.1728-1733. 2011.
[13] A. Abuelyamen, R. Ben-Mansour, H. Abualhamayel, & E.M.A. Mokheimer. "Parametric study on beta-type Stirling engine." Energy Conversion and Management, vol.145, pp.53-63. 2017.
[14] A. Z. Hafez, A. Soliman, K. A. El-Metwally, & I. M. Ismail, "Solar parabolic dish Stirling engine system design, simulation, and thermal analysis." Energy conversion and management, vol.126, pp.60-75, 2016.
[15] M. H. Ahmadi, M. A. Ahmadi, & F. Pourfayaz, "Thermal models for analysis of performance of Stirling engine: A review. Renewable and Sustainable Energy Reviews", vol.68, pp.168-184, 2017.