簡易檢索 / 詳目顯示

研究生: 劉□睿
論文名稱: 利用磁控濺鍍法在鎳酸鑭底電極上沈積鋯鈦酸鋇薄膜作為微波變容器之研究
The Study of Ba(Zr,Ti)O3 Thin Films Deposited on LaNiO3 electrode by RF Magnetron Sputtering for microwave varactors
指導教授: 吳泰伯
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 91
中文關鍵詞: 鋯鈦酸鋇微波變容器調諧元件
外文關鍵詞: BZT, microwave, varactor, tunable device
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗的目的乃是發展較為新型之鐵電材料,觀測其在鐵電微波調諧元件上的應用,其內容為微波元件中最基本的變容器。由於鐵電調諧元件首重電容隨電壓而變的調變力,以及高頻下的介電損失,所以在材料的選擇上,取用與現今被廣泛討論的鈦酸鍶鋇(BST)同系列之鋯鈦酸鋇(BZT)做為材料研發的重點,BZT材料的特性在於比起BST有較小的介電損失,以及不弱的調變力,並且藉由鋯含量的增加,使居里溫度可以降至室溫以下,得到完全之順電相。本實驗配製三種不同鋯含量之Ba-rich靶材,採用射頻磁控濺鍍法濺鍍所需之薄膜。
    多篇論文曾提及,利用LNO底電極有助於使同樣為鈣鈦礦結構的鐵電材料在低溫結晶,且具有優選指向,本實驗係利用LNO底電極薄膜來幫助成長較好結晶品質之BZT薄膜。此外,影響調變力與介電損失的因素通常決定於薄膜的品質,其與製程參數的選擇有很大的關係,由實驗中發現,濺鍍功率、鍍膜溫度、以及鍍膜時的氣氛,皆會影響薄膜的物理以及電氣性質,太大或太小的濺鍍功率、太高或太低的鍍膜溫度,太多或太少的氧含量分壓,皆會造成薄膜性質的下降。本實驗最好的參數選擇為當濺鍍功率50W(2-inch靶材)、鍍膜溫度550℃、以及濺鍍氣氛為Ar/O2=75/25時會得到較好的薄膜品質。

    不同鋯含量的薄膜,展現出來的性質也不一樣,本實驗亦發現,隨著鋯含量的增加,薄膜展現出之調變力雖有下降之趨勢,但介電損失亦會降低,而材料對於鐵電調諧元件的實用性可由一項優異值來決定,從實驗的結果中,以鋯含量最多者之薄膜得到的優異值最大。

    此外,在高頻量測上,本實驗採用的量測模型乃選自Zhengxiang Ma、Andrew J.[40]等人所發展的一套模型,量測此材料在高頻上所展現出的電氣特性,從結果得知,此模型量測的量測的準確範圍約在1GHz以下。


    目錄 摘要………………………………………………………………… I 致謝………………………………………………………………… III 目錄………………………………………………………………… V 表目錄…………………………………………………………….... VII 圖目錄……………………………………………………………... VIII 第一章 緒論………………………………………………………… 1 第二章 文獻回顧…………………………………………………… 6 2.1鐵電材料之發展與研究………………………………………….. 6 2.1.1 晶體結構與鐵電材料之特性……………………………….. 6 2.1.2現今鐵電薄膜之發展………………………………………... 7 2.1.3鈦酸鋇系鐵電材料…………………………………………... 9 2.1.3-1鈦酸鋇…………………………………………………… 9 2.1.3-2鈦酸鍶鋇……………………………………………….. 10 2.1.3-3鋯鈦酸鋇……………………………………………….. 10 2.1.3-4擴散性相變化………………………………………….. 11 2.2鐵電薄膜在可調式微波元件上之應用………………………… 12 2.2.1優異值………………………………………………………. 12 2.2.2 鐵電可調微波元件之種類………………………………… 14 2.2.2-1 變容器…………………………………………………. 15 2.2.2-2 相位移器………………………………………………. 15 2.2.2-3 濾波器…………………………………………………. 16 2.2.2-4 鐵電相位陣列天線……………………………………. 17 2.3高頻量測模型…………………………………………………… 17 第三章 實驗流程………………………………………………….. 31 3.1 底電極之製作…………………………………………………... 31 3.1.1 Pt/Ti/SiO2/Si基板之準備…………………………………... 31 3.1.2 LNO下電極薄膜之製備…………………………………… 31 3.2 BZT薄膜之製備……………………………………………….... 32 3.2.1 BZT靶材…………………………………………………... 32 3.2.2 BZT薄膜…………………………………………………... 32 3.3 Pt上電極之製作……………………………………………….. 33 3.4薄膜分析量測………………………………………………….. 33 3.4.1 薄膜結構分析…………………………………………….. 33 3.4.2 成份分析………………………………………………….. 33 3.4.3 厚度量測及表面微觀結構……………………………….. 33 3.4.4 電性分析………………………………………………….. 34 第四章 結果與討論……………………………………………….. 41 4.1薄膜成分分析………………………………………………….. 41 4.2濺鍍參數對薄膜性質之影響………………………………….. 41 4.2.1濺鍍功率之影響…………………………………………... 41 4.2.1-1 結構分析……………………………………………... 41 4.2.1-2 電性分析……………………………………………... 43 4.2.1-3 高頻介電特性………………………………………... 46 4.2.2 鍍膜溫度之影響………………………………………….. 47 4.2.2-1 結構分析……………………………………………... 47 4.2.2-2 電性分析……………………………………………... 48 4.2.2-3 高頻介電特性………………………………………... 50 4.2.3 濺鍍氣氛之影響………………………………………….. 50 4.2.3-1 結構分析……………………………………………... 50 4.2.3-2 電性分析……………………………………………... 51 4.2.3-3 高頻介電特性………………………………………... 52 4.3. 不同組成之最佳化條件薄膜………………………………… 53 4.3.1 結構分析……………………………………………. …… 53 4.3.2 低頻電性分析…………………………………………….. 54 4.3.3 高頻介電特性…………………………………………….. 55 第五章 結論……………………………………………………….. 86 參考文獻…………………………………………………………… 88 表目錄 表2.1 典型鐵電材料之介電損失與調變力…………………….. 21 表3.1 LNO底電極之濺鍍條件…………………………………. 35 表3.2 BZT薄膜之濺鍍條件…………………………………….. 35 表3.3 Pt上電極之濺鍍條件……………………………………... 35 表4.1 不同金屬離子在離子能量為500eV時之濺射率………... 57 圖目錄 圖2.1 Displacement of ions from central position…………………... 22 圖2.2 壓電性、焦電性、鐵電性材料之相屬關係圖……………... 22 圖2.3 典型鐵電材料之電滯曲線圖………………………………... 23 圖2.4 典型ABO3鈣鈦礦之晶體構造示意圖……………………... 23 圖2.5 鈦酸鋇相轉變之結晶構造與溫度關係圖…………………... 24 圖2.6 DPT行為1及正常鐵電行為2:(a)自發極化對溫度,(b)介電常 數對溫度,(c)介電常數對頻率關係圖……………………………... 24 圖2.7 鐵電材料電容-電壓曲線圖:(a).鐵電相;(b).順電相……... 25 圖2.8 實際電容器之相位變化圖…………………………………... 25 圖2.9 鐵電微帶線相位移器之概圖………………………………... 26 圖2.10 四種基本的共振線路………………………………………. 26 圖2.11 四種基本共振線路(圖2.10)在共振頻率下之等校電路….. 27 圖2.12 共振頻率響應………………………………………………. 27 圖2.13 濾撥器之簡易線路…………………………………………. 28 圖2.14 (a).經由鐵電非線性電容所組成之簡單線路,(b)與其等校出之電路圖……………………………………………………………….. 28 圖2.15 相位陣列天線示意圖。由相移器陣列以及發射源所組成,可調整掃瞄方向……………………………………………………….. 29 圖2.16 信號流動圖形(one-port) …………………………………... 29 圖2.17 使用微小化CPW探針在金屬介電質-金屬之三層結構之量測模型………………………………………………………………….. 30 圖2.18 量測模型(圖2.17)之等效電路…………………………….. 30 圖3.1 LNO粉末煆燒後之XRD…………………………………….. 37 圖3.2 LNO靶材配製之流程圖……………………………………... 37 圖3.3 BaZrO3粉末煆燒後之XRD………………………………….. 38 圖3.4 Ba2TiO4粉末煆燒後之XRD.................................................... 38 圖3.5 Ba-rich BZT靶材配製之流程圖…………………………….. 39 圖3.6 上電極圖樣…………………………………………………... 40 圖3.7 實驗流程圖…………………………………………………... 40 圖4.1 不同x值之靶材與其薄膜成份之關係圖…………………… 58 圖4.2 鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量之薄膜在不同濺鍍功率之XRD分析圖形……………………………………… 58 圖4.3 BZT薄膜之橫截面FEGSEM圖…………………………….. 60 圖4.4 濺鍍一小時下,BZT薄膜之不同功率與膜厚之關係圖…... 60 圖4.5鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量之薄膜在不同濺鍍功率下之介電常數與介電損失對頻率曲線………………….. 61 圖4.6鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量之薄膜在不同濺鍍功率下之介電常數對外加電場曲線………………………….. 63 圖4.7 鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量之薄膜在不同濺鍍功率下之高頻介電常數與介電損失對頻率曲線………….. 65 圖4.8 鍍膜功率為50W、Ar/O2=75/25下,不同鋯含量之薄膜在不同濺鍍功率之XRD分析圖形………………………………………… 67 圖4.9 濺鍍一小時下,BZT薄膜之不同鍍膜溫度與膜厚之關係圖.. 68 圖4.10 濺鍍功率50W、Ar/O2=75/25下,不同鋯含量之薄膜在不同鍍膜溫度下之介電常數與介電損失對頻率曲線…………………….. 69 圖4.11 濺鍍功率50W、Ar/O2=75/25下,不同鋯含量之薄膜在不同鍍膜溫度下之介電常數對外加電場曲線…………………………….. 71 圖4.12 濺鍍功率50W、Ar/O2=75/25下,不同鋯含量之薄膜在不同鍍膜溫度下之高頻介電常數與介電損失對頻率之曲線…………….. 73 圖4.13 鍍膜功率為50W、鍍膜溫度為550℃下,不同鋯含量之薄膜在不同濺鍍功率之XRD分析圖形………………………………… 75 圖4.14 濺鍍一小時下,BZT薄膜之不同鍍膜溫度與膜厚之關係圖..76 圖4.15 濺鍍功率50W、鍍膜溫度為550℃下,不同鋯含量之薄膜在不同濺鍍氣氛下之介電常數與介電損失對頻率之曲線………….. 77 圖4.16 濺鍍功率50W、鍍膜溫度550℃下,不同鋯含量之薄膜在不同濺鍍氣氛下之介電常數與外加電場之曲線…………………….. 79 圖4.17 濺鍍功率50W、鍍膜溫度為550℃下,不同鋯含量之薄膜在不同濺鍍氣氛下之高頻介電常數與介電損失對頻率之曲線…….. 81 圖4.18 濺鍍功率為50W,鍍膜溫度為550℃、濺鍍氣氛為Ar/O2=75/25下,不同鋯含量之薄膜之XRD分析圖形………………………… 83 圖4.19 濺鍍一小時下,不同鋯含量之BZT薄膜與膜厚之關係圖.. 83 圖4.20 BZT塊材之介電常數對溫度分佈圖………………………. 84 圖4.21 濺鍍功率50W、鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量薄膜之介電常數與介電損失對頻率曲線…………………….. 84 圖4.22 濺鍍功率50W、鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量薄膜之介電常數對外加電場曲線…………………………….. 85 圖4.23 濺鍍功率50W、鍍膜溫度為550℃、Ar/O2=75/25下,不同鋯含量薄膜之介電常數與介電損失對頻率曲線…………………….. 85

    參考資料
    1.Stanley S. Toncich “Potential Impact of Ferroelectric Technology For PCS and Cellular Communications”, Integrated Ferroelectrics, 2000, Vol. 28(1-4), pp. 37-47.
    2.K. Torii, H. Kawakami, H. Miki, K. Kushida, T. Itoga, T. Goto, T. Kumihashi, N. Yokoyama, M. Moniwa, K. Shoji, T. Kaga, and Y. Fujisaki, “Process and Properties of Pt/Pb(Zr,Ti)O3/Pt Integrated Ferroelectric capacitors”, Integrated Ferroelectrics 16(1-4), (1997) 21.
    3.C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, H. K. Kang, S. I. Lee, M. Y. Lee, “Deposition of Extremely Thin (Ba,Sr)TiO3 thin films for Ultra-Large-Scale Integrated Dynamic Random Access Memory Application”, Appl. Phys. Lett., 67(19), (1995) 2819.
    4.李雅明, “固態電子學”, 全華科技, (1995).
    5.施修正,“利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜之研究”, 清華大學, 博士論文, (1999).
    6.A. J. Moulson, J. M. Herbert, “Electroceramics-Materials• properties•□application”, published by CHAPMAN & HALL (1990).
    7.賴昇志, “以LaNiO下電極,開發PZT鐵電記憶體低溫製成之研究”, 清華大學, 碩士論文, (2001)
    8.C. Feldman, “Formation of thin films of BaTiO3 by Evaporation”, View of Science Instrument, Vol. 26(5), p463, (1954).
    9.A.E. Feuersanger, A.K. Hagenlocher and A.L. Solomln, “Preparation and Properties of Thin Barium Titanate Films”, J. electrochem. Soc. 111, 1387, (1964).
    10.I. H. Pratt and S. Firestone, “Fabrication of rf-sputtered Barium Titanate”, J. Vac. Sci. Tech., 8, 256(1971).
    11.P. C. V. Buskirk, R.Gardiner, P. S. Kirlin, S. Nutt, “Reduced-Pressure MOCVD of Highly Crystalline BaTiO3 Thin Films”, J. Mater. Res., 7(3), (1992) 542.
    12.L. A. Wills, B. W. Wessels, D. S. Richeson, and T. J. Marks, “Epitaxial Growth of BaTiO3 Thin Films By Organometallic Chemical Vapor Deposition”, Appl. Phys. Lett., 60(1), (1992) 41.
    13.A. Nazeri, m. Kahn, T. Kidd, “Strontium-Barium-Titanate Thin Films by Sol-Gel Processing”, J. Mater. Sci. Lett., 14, (1993) 1085.
    14.S. G. Yoon, J. C. Lee, and A. Safari, “Preparation of Thin-Film (Ba0.5,Sr0.5)TiO3 by the Laser Ablation Technique and Electrical Properties”, J. Appl. Phys., 76(5), (1994) 2999.
    15.S. Jerry Fiedziuszko, Fellow, IEEE, Ian C. Hunter, Senior Member, IEEE, Tatsuo Itoh, Fellow, IEEE, Ypshio Kobayashi, Fellow, IEEE, Toshio Nishikawa, Fellow, IEEE, Steven N. Stitzer, Senior Member, IEEE, and Kikuo Wakino, Life Fellow, IEEE, “Dielectric Materials, Devices, and Circuits”, IEEE Trans. On Microwave Theory and Techniques, Vol. 50, No. 3, March 2002.
    16.Spartak S. Gevorgian, Senior Member, IEEE, and Erik Ludvig Kollberg, Fellow, IEEE, “Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices?”, IEEE Trans. On Microwave Theory and Techniques, Vol. 49, No. 11, November 2001.
    17.Y. Xu, “Ferroelectric Materials and Their Applications”, published by North-Holland Netherlands, (1991).
    18.吳朗, “電子陶瓷-介電”, 全欣資訊圖書, (1994)
    19.“Handbook of Thin Film Materials”, editd by Hari Singh Nalwa (2002).
    20.林居南, “添加劑對鈦酸鋇陶瓷電性及相變化的影響”, 清華大學, 博士論文, (1990).
    21.D. Hennings, and A. Schnell, “Diffuse Ferroelectric Phase Transitions in Ba(Zr,Ti)O3 Ceramics”, J. American Ceramic Society, Vol 65, No. 11, p539, (1982).
    22.Stephen M. Neirman, “The Curie Point Temperature of Ba(Ti1-xZrx)O3 Solid Solutions”, J. Materials Science, Vol. 23, (1998) 3973-3980.
    23.A. Qutzourhit, M.A. El Idrissi Raghni, M.L. Hafid, F. Bensamka, Abdelkader Outzourhit, “Characterization of Hydrothermally Prepared Ba(Ti1-xZrx)O3”, J. Alloys and Compounds, 340, (2002) 214-219.
    24.B. H. Park, Y. Gim, Y. Fan, and Q. X. Jia, “High Nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates”, Appl. Phys. Lett. Vol. 77, No. 16, (2000).
    25.Tito Ayguavives, Ali Tombak, Jon-Paul Maria, Gregory T. Stauf, Craig Ragaglia, Jeff Roeder, Amir Mortazawi, and Angus I. Kingon, “Physical properties of (Ba,Sr)TiO3 thin films used for integrated capacitors in microwave applications”, IEEE, (2001).
    26.Ali Tombak, Student Member, IEEE, Jon-Paul Maria, Francisco Ayguavives, Zhang Jin, Student Member, IEEE, Gregory T. Stauf, Angus I. Kingon, Member, IEEE, and Amir Mortazawi, Member, IEEE “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireless Components Letters, Vol. 12, No. 1, (2002).
    27.C. M. Carlson, T. V. Rivkin, P. A. Parilla, J. D. Perkins, D. S. Ginley, A. B. Kozyrev, V. N. Oshadchy, and A. S. Pavlov, “Large Dielectric constant (ε/ε0>6000) Ba0.4Sr0.6TiO3 Thin Films for High-Performance microwave Phase Shifters”, Appl. Phys. Lett. Vol. 76, No. 14, (2000).
    28.S. Hyun, J. H. Lee, S. S. Kim, K. Char, S. J. Park, J. Sok, and E. H. Lee, “Anisotropic Tuning Behavior in Epitaxial Ba0.5Sr0.5TiO3 Thin Films”, Appl. Phys. Lett. Vol. 77, No. 19, (2000).
    29.Zhi Yu, Chen Ang, Ruyan Guo, and A. S. Bhalla, “Dielectric Properties and High Tunability of Ba(Ti0.7Zr0.3)O3 Ceramics under DC Electric Field”, Appl. Phys. Lett. Vol. 81, No. 7, (2002).
    30.J. S. Horwitz, W. Chang, A. C. Carter, J. M. Pond, S. W. Kirchoefer, D. B. Chrisey, J. Levy, and C. Hupert, “Structure/property relationship in ferroelectric thin films for frequency agile microwave electronics,” Integrated Ferroelect., vol. 22, pp. 799–809, (1998).
    31.H.D. Wu and F. S. Barnes, “Doped Ba0.6Sr0.4TiO3 thin films for microwave device applications at room temperature,” Integrated Ferroelect., vol. 22, pp. 811–825, (1998).
    32.J. M. Pond, S.W. Kirchoefer,W. Chang, J. S. Horwitz, and D. B. Chrisey, “Microwave properties of ferroelectric thin films,” Integrated Ferroelect., vol. 22, pp. 837–848, (1998).
    33.W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchhoefer, C. M. Gilmore, and D. B. Chrisey, “The effect of annealing on microwave properties of Ba0.5Sr0.5TiO3 thin films,” Appl. Phys. Lett., vol. 74, pp.1033–1035, (1999).
    34.A. B. Kozyrev, T. B. Samoilova, A. A. Golovkov, E. K. Hollmann, D. A. Kalinikos, V. E. Lginov, A. M. Pruan, and O. I. Soldatenkov, “Nonlinear behavior of thin film SrTiO3 capacitors at microwave frequencies,” J. Appl. Phys., vol. 84, pp. 3326–3332, (1998).
    35.J. D. Banieki, R. B. Laibowitz, T. M. Shaw, P. R. Duncombe, and D. A. Neumayer, “Dielectric relaxation of Ba0.7Sr0.3TiO3 thin films from 1MHz to 20 GHz,” Applied Phys. Lett., vol. 72, pp. 498–500, (1998).
    36.J. Bellotti, E. K. Akdogan, A. Safari, “Structure and Dielectric Characterization of SrTiO3 and BST Thin Films for Microwave Applications”, IEEE, (2001).
    37.Franco De Flaviis, N. G. Alexopoulos, Fellow, IEEE, and Oscar M. Stafsudd, “Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material”, IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 6, (1997) 963.
    38.Kai Chang, “RF and Microwave Wireless Systems”, published by John Wiley & Sons, INC.
    39.David Pozar, “Microwave Enginrering”, published by John Wiley & Sons, INC.
    40.X. Oriolsa and F. Martin, “Analytical solitons in nonlinear transmission lines loaded with heterostructure barrier varactors”, J. Appl. Phys. Vol. 90, No. 51, (2001).
    41.Donald C. Collier, “Ferroelectric Phase Shifter for Phase Array Radar Applications”, IEEE.
    42.Zhengxiang Ma, Andrew J. Becker, P. Polakos, Harold Huggins, John Pastalan, Hui Wu, K. Watts, Y. H. Wong, and P. Mankiewich, “RF Measurement Technique for Characterizing Thin Dielectric Films”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.45, NO.8, (1998) 1811.
    43.陳寶清, “離子鍍及濺射技術”, 國防工業出版社, (1990) 83-95.
    44.W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchoefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films”, APPLIED PHYSICS LETTERS VOLUME 76, NUMBER 9 28 FEBRUARY 2000.
    45.R. York, A. Nagra, E. Erker, T. Taylor, P. Periaswamy, J. Speck, S. Streiffer, O. Auciello, “Microwave Integrated Circuits Using Thin-Film BST”, IEEE, (2001).
    46.I. R. Anderson, G. W. Brady, W. J. Merz and J. P. Remeika, J. Appl. Phys. 26 (1995) 1387.
    47.R. Waser and D. M. Smyth, Ferroelectric Thin Films : Synthesis and Basic Properties, eds. C. P. de Araujo, J. F. Scott and G. W. Taylor (Gordon and Breach, Amsterdam, 1996) p.47.
    48.D. Nagano, H. Funakubo, O. Sakurai, K. Shinozaki and N. Mizutami, J. Mater. Res. 12 (1997) 1655.
    49.Michael Voigts, WolfGang Menesklou, Ellen Ivers-Tiffee, “Dielectric Properties and Tunability of BST and BZT Thick Films for Microwave Application”, Integrated Ferroelectrics, Vol. 39, (2001), pp.382-392.
    50.J. Synowczynski, L. C. Sengupta, and L. H. Chiu, “Investigation of particle size on the 10 GHz microwave properties of Ba1-xSrxTiO3/MgO composite ceramics”, Integrated Ferroelect., vol. 22, pp. 861–872, (1998)
    51.Wontae Chang, and Charles M. Gilmore, “Influence of strain on microwave dielectric properties of (Ba,Sr)TiO3 thin films”, J. Appl. Phys. Vol. 87, No. 6 (2000) 3044.
    52.Woo-Chul Yi, and T. S. Kalkur, Elliott Philofsky and Lee Kammerdiner, Anthony A. Rywak, “Dielectric properties of Mg-doped Ba0.96Ca0.04Ti0.84Zr0.16O3 thin films fabricated by metalorganic decomposition method”, Appl. Phys. Lett. Vol. 78, No. 22, (2001).
    53.Jaemo Im, O. Auciello, P. K. Baumann, and S. K. Streiffer, D. Y. Kaufman, A. R. Krauss, “Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+ yO3+z thin films for voltage tunable devices”, Appl. Phys. Lett. Vol. 76, No. 5, (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE