簡易檢索 / 詳目顯示

研究生: 樊汝川
Ru-Chuan Van
論文名稱: 植物液泡質子輸送焦磷酸水解脢第五穿膜區功能結構探討
Functional and Structural Roles of Transmembrane Segment V of the Plant Vacuolar H+-pyrophosphatase
指導教授: 潘榮隆
Rong-Long Pan
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 73
中文關鍵詞: 液泡質子輸送焦磷酸脢穿膜區
外文關鍵詞: vacuole, proton pumping, pyrophosphatase, transmembrane segment
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物液泡質子輸送焦磷酸水解脢係由二個分子量為81 kDa的同元次體組成。經拓僕分析,綠豆液泡質子輸送焦磷酸水解脢包含了14個穿膜區;不同物種間液泡質子輸送焦磷酸水解脢之胺基酸序列比對發現:緊鄰於受質結合區之前(胺基端)的第五穿膜區具有很高的序列相似度。同時,親疏水分析顯示第五穿膜區之疏水性較其他穿膜區之疏水性低。因此推論,第五穿膜區可能參與了植物液泡質子輸送焦磷酸水解脢之質子輸送過程。在本論文中,我們採用定點突變法測試第五穿膜區內各個胺基酸的功能:穿膜區內的各個胺基酸分別被單點突變成丙氨酸,接著這些突變的cDNA被大量表現於酵母菌之液泡膜上,然後我們將酵母菌液泡膜單離出來,分別測定各個突變後之液泡質子輸送焦磷酸水解脢,檢視其焦磷酸水解活性及質子輸送活性的變化。結果發現,第五穿膜區內的突變可區分為二類:第一類突變之酵素活性改變較小,而第二類突變包含E225A、GYG模序(229至231)、A238S及R242A,其焦磷酸水解活性、質子輸送活性及耦合效率都出現明顯的下降。其中Y230A突變更進一步顯示對原有之陽離子效應的緩解。根據進一步的胺基酸序列比對結果,我們推論GYG模序可能是液泡質子輸送焦磷酸水解脢中的陽離子結合片段;第五穿膜區的新模型:GYG模序為中心,連接了穿膜區5A及5B,於焉成形。我們製備了Y230S及Y230F兩個突變以進一步研究酪氨酸230之結構╱功能角色;將酪氨酸突變成苯丙氨酸並不改變此酵素之焦磷酸水解活性,然而其質子輸送活性及耦合效率卻下降了百分之四十,顯見酪氨酸230上的氫氧基直接參與了液泡質子輸送焦磷酸水解脢之質子輸送過程。


    Abstract
    Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase containing a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrates that the transmembrane domain 5 (TM5) of the V-PPase is highly conserved and located at the N-terminal side of the putative substrate-binding loop. Furthermore, the hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in TM5 region than others. Accordingly, it is believed that the TM5 is probably involved in the proton translocation of V-PPase. In this study, we used the site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Our results indicate that the several mutants, attributed as Group 1, displayed minor variations in enzymatic properties, while the others, attributed as Group 2 including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. The mutant Y230A also displayed a relief in the cation effects on the V-PPase. Mutation of several residues along TM5 brought as well about the structural changes of V-PPase. Analysis on sequence alignment suggests that GYG motif may form a cation-binding cage for V-PPase. A model with two helical wheels on both sides of GYG motif is thus proposed for TM5 of V-PPase. Two more mutations of Y230 (Y230S and Y230F) were constructed to investigate the structure/function role of this tyrosine residue in detail. The substitution of tyrosine to phenylalanine at 230 did not change the hydrolytic activity of V-PPase much, but shifted the proton translocating ability, hence the coupling efficiency of V-PPase to 60% of the wild type. The hydroxyl moiety on the Y230 residue might be therefore directly involved in the proton translocating process of V-PPase.

    Contents v Abstract 1 Abbreviations 5 Introduction 7 Materials and Methods 11 Microorganisms 11 Site-directed mutagenesis 11 Preparation of yeast microsomes 12 Measurements of enzymatic activities and protein concentration 13 Measurement of the PPi-dependent proton translocation 14 SDS-PAGE and Western analysis 15 Control over K+, Na+, and Ca2+ contamination 15 Chemicals 16 Results 17 Expression and enzymatic activity of mung bean V-PPase in yeast 17 Enzymatic activities and proton translocation of TM5 mutants17 Kinetics of V-PPase mutants 19 Ion effects and pH optimum of V-PPase mutants19 Thermal stability of V-PPase mutants 20 Discussion 22 References 28 Tables and Figures 34 Appendix 65

    Barik, S. (1993) Site-directed mutagenesis by double polymerase chain reaction: Megaprimer method. In: Methods Mol. Biol. (White, B. A. ed.) 15, Humana, New Jersey, pp. 277-286.
    Baykov, A. A., Dubnova, E. B., Bakuleva, N. P., Evtushenko, O. A., Zhen, R.-G. and Rea, P. A. (1993) Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett. 327, 199-202.
    Belogurov, G. A. and Lahti, R. A. (2002) A lysine substitute for K+: A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J. Biol. Chem. 277, 49651-49654.
    Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    Claros, M.G. and von Heijne, G. (1994) TopPred II: An improved software for membrane protein structure predictions. CABIOS 10, 685-686.
    Clerc, S. and Barenholz, Y. (1998) A quantitative model for using acridine orange as a transmembrane pH gradient probe. Anal. Biochem. 259, 104-111.
    Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R. (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69-76.
    Fiske, C. H. and Subbarow, Y. (1925) The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375-400.
    Flynn, G. E., Johnson, J. P. and Zagotta, W. N. (2001) Cyclic nucleotide-gated channels: Shedding light on the opening of a channel pore. Nat. Rev. Neurosci. 2, 643–652.
    Gamel, K. and Torre, V. (2000) The interaction of Na+ and K+ in the pore of cyclic nucleotide-gated channels. Biophys. J. 79, 2475–2493.
    Gietz, R. D., Schiestl, R. H., Willems, A. R. and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360.
    Gordon-Weeks, R., Steele, S. H. and Leigh, R. A. (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol. 111, 195-202.
    Gordon-Weeks, R., Koren'kov, V. D., Steele, S. H., and Leigh, R. A. (1997) Tris is a competitive inhibitor of K+ activation of the vacuolar H+-pumping pyrophosphatase. Plant Physiol. 114, 901-905.
    Hofmann, K., Bucher, P., Falquet, L., and Bairoch, A. (1999) The PROSITE database, its status in 1999. Nucleic Acids Res. 27, 215-219.
    Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H. and Pan, R. L. (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1608, 190-199.
    Hua, B.- G., Mercier, R. W., Leng, Q. and Berkowitz, G. A. (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiology 132, 1353-1361.
    Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T. and MacKinnon, R. (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522.
    Kim, E. J., Zhen, R.-G. and Rea, P. A. (1995) Site-directed mutagenesis of vacuolar H+- pyrophosphatase: Necessity of Cys634 for inhibition by maleimides but not catalysis. J. Biol. Chem. 270, 2630-2635.
    Kuner, T., Seeburg, P. H. and Guy, H. R. (2003) A common architecture for K channels and ionotropic glutamate receptors? Trends Neurosci. 26, 27-32.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 222, 680-685.
    Maeshima, M. (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles: Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur. J. Biochem. 196, 11-17.
    Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465, 37–51.
    Maeshima, M. (2001) Tonoplast transporters: Organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 469-497.
    McIntosh, M. T. and Vaidya, A. B. (2002) Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. Int. J. Parasitol. 32, 1-14.
    Miller, C. (2001) See potassium run. Nature 414, 23-24.
    Morais-Cabral, J. H., Zhou, Y. and MacKinnon, R. (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42.
    Nakanishi, Y., Saijo, T., Wada, Y. and Maeshima, M. (2001) Mutagenic analysis of functional residues in putative substrate binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276, 7654-7660.
    Obermeyer, G., Sommer, A., and Bentrup, F. W. (1996) Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrum. Biochim. Biophys. Acta 1284, 203–12.
    Rea, P. A., Britten, C. J., Jennings, I. R., Calvert, C. M., Skiera, L. A., Leigh, R. A., and Sanders, D. (1992) Regulation of vacuolar H+-pyrophosphatase by calcium. A reaction kinetic analysis. Plant Physiol. 100, 1706–15.
    Rea, P. A. and Turner, J. C. (1990) Tonoplast adenosine triphosphatase and inorganic pyrophosphatase. In: Methods Plant Biochem. (Lea, P. J. ed.) 3, Academic Press, London, pp. 385–405.
    Rost, B., Fariselli, P., and Casadio, R. (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Prot. Science 7, 1704-1718.
    Rost, B. and Sander, C. (1993) Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584-599.
    Rottenberg, H. (1979) The measurement of membrane potential and delta pH in cells, organelles, and vesicles. In: Methods Enzymol. (Fleischer, S., and Packer, L. eds.) 55, Academic Press, New York, pp. 547-569.
    Schwalbe, R. A., Bianchi, L. and Brown, A. M. (1997) Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus. J. Biol. Chem. 272, 25217–25223.
    Schwalbe, R. A., Rudin, A., Xia, S- L., and Wingo, C. S. (2002) Site-directed glycosylation tagging of functional Kir2.1 reveals that the putative pore-forming segment is extracellular. J. Biol. Chem. 277, 24382-24389.
    Schwalbe, R. A., Wang, Z., Bianchi, L. and Brown, A. M. (1996) Novel sites of N-glycosylation in ROMK1 reveal the putative pore-forming segment H5 as extracellular. J. Biol. Chem. 271, 24201–24206.
    Schwalbe, R. A., Wang, Z., Wible, B. A. and Brown, A. M. (1995) Potassium channel structure and function as reported by a single glycosylation sequon. J. Biol. Chem. 270, 15336–15340.
    Takasu, A., Nakanishi, Y., Yamanuchi, T. and Maeshima, M. (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J. Biochem. (Tokyo) 122, 883-889.
    Tzeng, C. M., Yang, C. Y., Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. S., Ma, J. T. and Pan, R. L. (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem. J. 316, 143–147.
    Walker, R. R. and Leigh, R. A. (1981) Mg2+-dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153, 150-155.
    Wang, M. Y., Lin, Y. H., Chow, W. M., Chung, T. P. and Pan, R. L. (1989) Purification and characterization of tonoplast ATPase from etiolated mung bean seedlings. Plant Physiol. 90, 475-481.
    Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. H., Tam, M. F. and Pan, R. L. (1999) Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N,N’-dicyclohexylcarbodi-imide. Biochem. J. 342, 641-646.
    Zagotta, W. N. and Siegelbaum, S. A. (1996) Structure and function of cyclic nucleotide- gated channels. Annu. Rev. Neurosci. 19, 235–263.
    Zhen, R.-G., Kim, E. J. and Rea, P. A. (1997a) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N’-Dicyclohexylcarbodiimide. J. Biol. Chem. 272, 22340-22348.
    Zhen, R.-G., Kim, E. J. and Rea, P. A. (1997b) The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv. Bot. Res. 25, 297–337.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE