簡易檢索 / 詳目顯示

研究生: 陳孟偉
Chen Meng Wei
論文名稱: 以比色分析法分析微波及極低頻電磁場對DNA受損細胞其存活率之影響
Employing MTT assay to analyze the surviving fraction of DNA-damaged cell irradiated by microwave and Extremely Low Frequency electromagnetic field
指導教授: 許 志 木英
Ian C. Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 72
中文關鍵詞: 比色分析法微波極低頻電磁場存活率
外文關鍵詞: MTT assay, Microwave, Extremely low frequency electromagnetic wave, Surviving fraction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    生物體中幾乎所有生理表現均由微小的電磁訊號傳遞來完成,而生物體中分子的鍵結其能量均遠大於微波及極低頻電磁場的能量。該電磁場之能量雖不足以打斷其鍵結,但對這些具有電子的分子會有極化、飄移等作用,因此可能對細胞造成影響。

    今我們先以鈷60或過氧化氫在溶液中所產生的自由基來攻擊V79-4細胞的DNA,使細胞關於修復DNA的基因能夠表現而進行修復DNA的工作。在修復的同時,我們給予不同的電磁波照射;之後利用MTT比色分析法來觀察細胞的存活率。MTT比色分析法的原理是利用MTT藥劑會與粒線體上電子傳遞鏈中的電子產生作用,使其顏色由黃轉紫,測其OD值以換算成細胞存活率。實驗結果顯示,不論是以鈷60或是過氧化氫所傷害的細胞,在修復DNA的同時若以極低頻電磁場加以照射,並不會影響其存活率。但對DNA已受到傷害的細胞加以照射微波波段電磁波時,經過統計的檢定後發現存活率有明顯的下降趨勢。為確認細胞是在受到DNA傷害後其存活率才會受到電磁波的影響,將細胞直接以不同頻率的電磁波照射而加以觀察,並未發現其存活率有明顯變化。

    另外我們也使用單細胞電泳法來觀察細胞中DNA受損的情形。因本次實驗無法觀察小劑量鈷60照射或是過氧化氫的傷害,所以將來改進之道為找到更好的實驗條件,如電泳時間、電泳液的成分等以利用電泳法觀察細胞中DNA受損情形。


    Abstract
    All functions in biological system are almost accomplished by transduction of electromagnetic signal; the binding energy among these biological molecules is larger than that of microwaves and extremely low frequency(ELF) electromagnetic(EM) fields. The energy of EM waves is incapable of breaking the bindings, but affect the electrons within the molecules for their polarization and drift, etc. So the cell properties may be influenced by the EM waves.

    In this dissertation, we utilized the free radicals that were generated by from Co-60 or hydrogen peroxide to attack the DNA of the V79-4 cell. The DNA repair-gene was triggered to repair the free radical damaged DNA. Meanwhile, The EM waves irradiated the target cell. The 2-[4,5– Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay presented the surviving fraction of the cell. The MTT powder changed the color from yellow to purple by an interaction between the reagent and the electrons in the electron-transport chain on the mitochondria. The optical density (OD) value retrieved from MTT assay deduced the surviving fraction of the cell. The results indicated that the ELF EM wave had no influences on the surviving fraction of the cells that were damaged by Co-60 or hydrogen peroxide. However, when the microwaves irradiated on the DNA-damaged cells, the statistical test clarified that the surviving fraction of the cell decreased significantly. In order to confirm the DNA-damaged cells were sensitive to EM waves, the microwaves and ELF EM waves were irradiating the cells that the DNA was not damaged. After obtaining the surviving fraction of the undamaged cell the experiments indicated that surviving fraction had no significant variation.

    In addition, we measure the DNA damages by single cell gel electrophoresis method. Nonetheless, the slight dose irradiator of Co-60 or hydrogen peroxide performed no effect in the strategy. The experimental conditions, such as the electrophoresis time and running buffers, could be further optimized in the future research.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 目錄Ⅰ 圖目錄與表目錄 目錄Ⅳ 第一章、緒論 1 1.1 文獻回顧 1 1.2 研究方向與目的 6 第二章、原理 8 2.1 電磁波的生物效應 8 2.1.1電磁波的微觀效應 8 2.1.2 電磁波的中觀效應 9 2.1.3 電磁波的巨觀效應 10 2.2 微波波段電磁波生物效應 11 2.2.1 熱效應 11 2.2.2 非熱效應 12 2.3 極低頻電磁場生物效應 13 2.4 電磁波對生物作用機制的假設 13 2.5 生物實驗原理 14 2.5.1 過氧化氫對細胞的傷害 14 2.5.2 鈷60對細胞的傷害 15 2.5.3 比色分析法(MTT Assay) 15 2.5.4 單細胞電泳分析法(Single Cell Gel Electrophoresis) 16 2.5.5 分次劑量效應 17 第三章、實驗系統與設計 18 3.1 實驗設備 18 3.1.1 微波波段電磁波 18 3.1.1.1 微波共振腔 19 3.1.1.2 微波電磁場量測儀器 20 3.1.2 極低頻波段電磁場 21 3.1.2.1 Helmholtz線圈照射場 21 3.1.2.2極低頻電磁場量測儀器 27 3.2 游離輻射照射場 28 3.3 生物材料 28 3.3.1 細胞株(Cell line) 28 3.3.2 化學藥品與試劑 29 3.4 實驗方法 30 3.4.1 比色分析法 30 3.4.1.1 細胞存活率實驗 31 3.4.1.2電磁場對細胞修復DNA影響之實驗 34 3.4.2 單細胞電泳分析法 36 第四章、實驗結果與討論 38 4.1 電磁場量測 38 4.1.1 微波波段電磁波 38 4.1.2 極低頻電磁場電磁波 41 4.2 微波波段電磁波共振腔GTEM 250之溫度控制 43 4.3 SAR量測 46 4.4比色分析法 48 4.4.1 微波波段及極低頻電磁場對細胞存活率的影響 48 4.4.2 過氧化氫對細胞存活率的影響 50 4.4.2.1 不同濃度之過氧化氫影響下的細胞存活率 50 4.4.2.2 分次劑量效應 51 4.4.2.3 微波電磁波與極低頻電磁場對經過過氧化氫 傷害的細胞其存活率的影響 51 4.4.3 鈷60放射線對細胞存活率的影響 53 4.4.3.1 不同劑量之鈷60放射線影響下的細胞存活率 54 4.4.3.2 分次劑量效應 54 4.4.3.3 微波電磁波與極低頻電磁場對經過鈷60放射 線傷害的細胞其存活率的影響 55 4.5 單細胞電泳分析法 57 第五章、結論 58 參考文獻 61 附錄一、單細胞電泳法之亮度質心分析 65 附錄二、細胞懸服役之比熱量測 69 附錄三、兩個母群體t-TEST檢定方法 71 圖表目錄 圖2.1 時變電磁場對細胞的效應 8 圖2.2 肌肉組織介電係數和導電常數隨電磁波頻率f的變化圖 9 圖2.3 DNA受到游離輻射攻擊的機制 15 圖2.4 以Scrolapp軟體所定義之彗星頭部與彗星長度 之示意圖 16 圖2.5 單次與分次劑量對細胞存活率之影響 17 圖3.1 微波照射的實驗裝置圖 19 圖3.2 GTEM微波共振腔內部構造圖 20 圖3.3 EMR-30電場量測棒 21 圖3.4單匝圓形線圈 22 圖3.5 Helmholtz 線圈 22 圖3.6 Helmholtz 線圈-球座標 25 圖3.7 Helmholtz 線圈裝置圖 26 圖3.8高斯磁場分佈模擬結果 27 圖3.9 EFA-3 低頻電磁場量測儀器 27 圖3.10鈷60放射源之劑量率與距離關係圖 28 圖3.11 96-well microplate示意圖 33 圖3.12鈷60照射示意圖 33 圖4.1自製鋁門洞口漏電場功率密度對時間的變化 39 圖4.2共振腔內一點電場功率密度對時間的變化 39 圖4.3 微波共振腔測試區強度分佈圖 40 圖4.4 Helmoltz線圈磁場強度 42 圖4.5 Helmoltz線圈背景值 42 圖4.6 高斯磁場分佈圖 43 圖4.7 微波共振腔溫度控制示意圖 44 圖4.8 微波共振腔溫度控制反應圖 45 圖4.9 經溫度控制後,細胞懸浮液的增溫情形 46 圖4.10 微波電磁波對細胞懸浮液增溫關係圖 47 圖4.11 受到10G低頻電磁場照射後的細胞存活率 48 圖4.12 受到5G低頻電磁場照射後的細胞存活率 49 圖4.13 受到2.45GHz電磁波照射後的細胞存活率 49 圖4.14 V79-4細胞對不同濃度的過氧化氫存活曲線圖 50 圖4.15 V79-4細胞單次與分次接受過氧化氫傷害之存活 率曲線 51 圖4.16 V79-4細胞經由過氧化氫處理後,再照射10Gauss 極低頻電磁場之存活率曲線 52 圖4.17 V79-4細胞經由過氧化氫處理後,再照射5Gauss 極低頻電磁場之存活率曲線 52 圖4.18 V79-4細胞經由過氧化氫處理後,再照射微低之 存活率曲線 53 圖4.19 V79-4細胞對鈷60照射劑量的存活曲線 54 圖4.20 V79-4細胞單次與分次接受鈷60照射之存活率曲線 55 圖4.21 V79-4細胞經由鈷60照射後,再照射10Gauss 極低頻電磁場之存活率曲線 55 圖4.22 V79-4細胞經由鈷60照射後,再照射5Gauss 極低頻電磁場之存活率曲線 56 圖4.23 V79-4細胞經由鈷60照射後,再照射微低之 存活率曲線 56 圖A.1 單細胞電泳圖及定義區域 66 圖A.2 不同劑量的單細胞電泳圖 66 圖A.3 尾部長度與彗星尾部質心比較圖 67 圖A.4 使用過氧化氫和鈷60傷害細胞DNA的劑量 反應關係圖 68 圖C.1 獨立樣本分為兩群,各群規模為3 71 圖C.2 成對樣本設計,包含三組實驗單位 72 表2.1 肌肉組織受到不同頻率外加電場造成介電常數及 導電係數改變一覽表 10 表3.1 Microplate內不同格所對應的位置和劑量 34 表4.1利用熱平衡的方法量測細胞懸浮液的比熱 47 表4.2 不同電磁波對細胞在存活率上的影響 49 表4.3過氧化氫處理後以不同電磁波影響細胞修復DNA 的存活率,以t-TEST檢定所得的p值 53 表4.4 經過鈷60照射後以不同電磁波影響細胞修復DNA 的存活率,以t-TEST檢定所得的p值 57 表B.1 利用熱平衡的方法量測純水的比熱 70

    參考文獻
    1. D. I. McRee and G. MacNichols, Incidence of sister chromatid exchange in bone marrow cells of the mouse following microwave exposure. Radiation Research.85,340-348(1981)
    2. A. Maes, L. Verschaeve, A. Arroyo, C. De Wagter, and L. Vercruyssen, In vitro cytogenetic effect of 2450MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics. 14,495-501(1993)
    3. S. Sarkar, S. Ali and J. Behari, Effect of low powermicrowave on the mouse genome:A direct DNA analysis. Mutation Research. 320,141-147(1994)
    4. Vijayalaxmi, M. R. Frei, S. J. Dusch, V. Guel, M. L. Meltz and J. R. Jauchem,Frequency if micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2450MHz radiofrequency radiation. Radiation research. 147,495-500(1997)
    5. M. R. Frei, R. E. Berger, S. J. Dusch, V. Guel, J. R. Jauchem, J. H. Merritt and M. A. Stedham, Chronic exposure of cancer-prone mice to low level 2450MHz radiofrequency radiation. Bioelectromagnetics. 19,20-31(1998)
    6. O. Ostling and K. J. Johanson, Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123,291-298(1984).
    7. H. Lai and N. P. Singh, Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 69,513-521(1996)
    8. R. S. Malyapa, E. W. Ahern, C. Bi, W. L. Straube, M. LaRegina, W. F. Pickard and Joseph L.Roti Roti, DNA damage in rat brain cells after in vivo exposure to 2450MHz electromagnetic radiation and various methods of Euthanasia. Radiation Research. 149, 637-645 (1998)
    9. R. S. Malyapa, E. W. Ahern, C. Bi, W. L. Straube, M. LaRegina, W. F. Pickard and Joseph L.Roti Roti, Measurement of DNA damage after exposure to 2450MHz electromagnetic radiation. Radiation Research. 148,608-617(1997)
    10. R. S. Malyapa, E. W. Ahern, C. Bi, W. L. Straube, M. LaRegina, W. F. Pickard and Joseph L.Roti Roti, Measurement of DNA damage after exposure to electromagnetic radiation in cellular phone communication frequency band. Radiation Research. 148,618-627(1997)
    11. M. L. Meltz and K. A. Walker, Radiofrequency(Microwave)radiation exposure of mammalian cells during UV-induced DNA repair synthesis. Radiation Research.110,255-266(1987)
    12. R. Mandeville, E.Franco, S. Sidrac-Ghali, L. Paris-Nadon, N. Rocheleau, G. Mercier, M.Desy and L. Gaboury, Evaluation of the potential carcinogenicity of 60Hz linear sinusoidal continuous-wave magnetic fields in fischer F344 rats. FASEB. J 11,1127-1136(1997)
    13. M. Yasui, T. Kikuchi, M. Ogawa, Y. Otaka, Minoru and H. Iwata, Carcinogenicity test of 50Hz sinusoidal magnetic field in rats. Bioelectromagnetics 18,531-540(1997)
    14. L McLean, A. thansandote, D. Lecuyer, M. Goddard, L. Tryphonas, J. C. Scaiano and F. Johnson, A 60Hz magnetic field increases the incidence of squamous cell carcinomas in mice previously exposed to chemical carcinogens. Cancer Letters,92,121-125(1995)
    15. R. D. Oqen, MYC mRNA abundance in unchanged in subcultures of HL60 cells exposed to power-line frequency magnetic field. Radiation Research, 150,23-30(1998)
    16. H. Lai and N. P. Singh, Acute exposure to 1 60Hz Magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 18,156-165(1997)
    17. H. P. Schwan, Biological effect of non-ionizing radiations : cellular properties and interactions. Annals of Biomedical Engineering. 16, 245-263(1988)
    18 S. M. Michaelson and J. C. Lin, Biology effects and health implications of radiofrequency radiation.(Plenum press, New York and London, 1987), P.95-101
    19. S. M. Michaelson and J. C. Lin, Biology effects and health implications of radiofrequency radiation.(Plenum press, New York and London, 1987), P.93-95
    20. S. M. Michaelson and J. C. Lin, Biology effects and health implications of radiofrequency radiation.(Plenum press, New York and London, 1987), P.85
    21. E. S. Hemie and S. Linn, Formation, prevention, and repair of DNA damaged by iron/hydrogen peroxide. The journal of biological chemistry.272,19095-19098(1997)
    22. Y. Liu, D. A. Peterson, H. Kimura and D. Schubert, Mechanism of cellular 2-[4,5-Dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide(MTT) reduction. Journal of Neurochemistry. 69, 581-593 (1997)
    23. P. L. Olive, J. P. Banath and R. E. Durand, Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the ‘comet’ assay. Radiation Research. 122,86-94(1990)
    24 E. J. Hall and D. Phil, Radiobiology for the radiologist.(J. B. Lippincott Company, Philadelphia,1994),P111-115.
    25. T. Macnamara, Handbook of antennas for EMC .(Artech House, Boston, 1995.),P121-124.
    26. M. Tubiana, J. Dutreix and A. Wambersie, Introduction to Radiobiology.(Taylor & Francis, London, 1990),p86.
    27. C. R. H. Kent, J. J. eady, G. M. Ross and G. G. Steel, The comet moment as a measure of DNA damage in the comet assay. INT. J. RADIAT. BIOL. 67,655-660(1995)
    28 彭游,吳水丕。生物統計學。(合記出版社,中華民國八十八年)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE