研究生: |
林紘祥 Lin, Hung Hsiang |
---|---|
論文名稱: |
太陽能晶碇到晶片製程之最佳派工研究-整合機台與人員配置 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System-Integration of Machines and Manpower Allocation |
指導教授: |
桑慧敏
Song, Whey Ming |
口試委員: |
劉復華
Liu, Fuh Hwa 遲銘璋 Chih, Ming Chang 徐文慶 Hsu, Chuck 王銘宗 Wang, Ming Zong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 派工 、多項式機率分佈派工法則 、再生之經驗暨啟發式演算法 、基因演算法 、粒子群聚最佳化演算法 |
外文關鍵詞: | Dispatching, Multi-nominal distribution dispatch rule, Meta-heuristic algorithm, Genetic Algorithm(GA), Particle Swarm Optimization(PSO) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文緣起於產學合作太陽能工廠中晶碇到晶片製程之最佳派工研究。其中所採用的績效指標為七天穩態情況下每一元作業員薪水所得到之產品銷售利潤,決策變數為需被服務之工件來到每個製程中被指派機台編號及作業員編號。
我們提出多項式機率分佈派工法則,以「人與工件之距離、作業人員能力與其薪水之間之函數」作為指派的依據。經模擬實驗(Flexsim) 顯示,本研究所提出之派工法則優於傳統“再生之經驗暨啟發式(meta-heursitic)”演算法,如基因演算法(Genetic Algorithm)及粒子群聚最佳化(Particle Swarm Optimization)演算法在合理的搜尋時間(24小時)所得之解。模擬實驗也顯示,本研究建議的派工比目前產學合作工廠所使用的派工法則提升了51% 的績效。
Motivated by the dispatching problems in our collaborated solar company, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot to water manufacturing systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a 7 days time window in steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process.
We propose a “Multi-nominal distribution dispatch rule” which is a function of operator’s ability, salary and the corresponding location. Simulation (via Flexsim) results show that the proposed rule outperforms many traditional meta-heuristic algorithms such as Generic algorithm (GA) and Particle Swarm Optimization (PSO). Simulation results also show that the proposed dispatch rule demonstrates improvement on the sales profit metrics of about 51% comparing with the method currently used in our collaborated solar company.
[1] Agnetis, A., Murgia, G. and Sbrilli, S.(2013)A job shop scheduling problem with human operators in handicraft production. International Journal of Production Research, 52, 13, 3820-3831.
[2] Asefeh, H.-G., Masound, R. and Neda, M.(2012)A novel mathematical model for manpower scheduling in break (relief) times in mixed model assembly lines. Procesia-Social and Behavioral Sciences, 62, 1371-1377.
[3] Chang, A.K., Jiang, H.-Y., Di, Y., Zhu, D. and Ge, Y (2008)Time-line based model for software project scheduling with genetic algorithms. Information and Software Technology, 50, 1142-1154.
[4] Lobo, B.J., Hodgson, T.J., King, R.E. and Thoney, K.A.(2013)Allocating job-shop manpower to minimize Lmax: Optimality criteria, search heuristics, and probabilistic qquality metrics. Computers and Operations Research, 40, 2569-2584.
[5] Mencia, R., Sierra, M.R., Mencia, C. and Varela, R (2015)Memetic algorithms for the job shop scheduling problem with operators. Applied Soft Computing, 34, 94-105.
[6] Pan, Q.-K., Suganthan, P.N., Chua, T.J. and Cai, T.X (2010)Solving manpower scheduling problem in manufacturing using mixed-integer programming with a two-stage heuristic algorithm. The International Journal of Advanced Manufacturing Technology, 46, 1229-1237.
[7] Parisa, S.-S., Reza, T.-M. and Hamed, K.(2013)Solving a new fuzzy multi-objective model for a multi-skilled manpower scheduling problem by particle swarm optimization and elite tabu search. The International Journal of Advanced Manufacturing Technology, 64, 1517-1540.
[8] Yoshimura, M., Fujimi, Y., Izui, K. and Nishiwaki, S (2006)Decision-making support system for human resource allocation in product development projects.International Journal of Production Research, 44, 5, 831-848.
[9] Zouba, M., Baptiste, P., Rebaine, D.(2009)Scheduling identical parallel machines and operators within a period based changing mode. Computers and Operations Research, 36, 3231-3239.